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ABSTRACT

Running correlations between pairs of stochastic time series are typically characterized by low-frequency
evolution. This simple result of sampling variability holds for climate time series but is not often recognized
for being merely noise. As an example, this paper discusses the historical connection between El Niño–Southern
Oscillation (ENSO) and average Indian rainfall (AIR). Decades of strong correlation (;20.8) alternate with
decades of insignificant correlation, and it is shown that this decadal modulation could be due solely to stochastic
processes. In fact, the specific relationship between ENSO and AIR is significantly less variable on decadal
timescales than should be expected from sampling variability alone.

1. Introduction

Running correlation analysis, that is, correlations
computed in moving windows, is frequently used in
climate research to diagnose changes in relationships
between two indices. This paper discusses the dangers
of physically interpreting low-frequency variability in
running correlations, particularly between indices of in-
terannual modes of climate variability. As an example,
we focus on a relationship whose changing nature has
been the topic of recent scientific concern, a relationship
of great societal importance, and historical significance
in the annals of climatology: the relationship between
the Indian monsoon rainfall and El Niño–Southern Os-
cillation.

The strength of the Southern Oscillation–Indian mon-
soon rainfall relationship during the late 1800s and early
1900s led Sir Gilbert Walker to discover the Southern
Oscillation (SO; Walker 1924; Walker and Bliss 1932).
The next several decades witnessed a general break-
down in the SO–Indian rainfall connection and curiosity
about SO went into hibernation until it was reawakened
by the strong Niño of 1957–58 and vigorous El Niño
activity in the 1960s (see Wallace et al. 1998). El Niño–
Southern Oscillation (ENSO) is now widely regarded
as an influence on Indian rainfall (Webster et al. 1998,
and references therein). As we shall see, renewed in-
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terest in the ENSO–average Indian rainfall (AIR) con-
nection is due, in part, to its renewed strength in the
late 1960s and 1970s and to its apparent breakdown
since then.

The decadal variation, or apparent nonstationarity, of
the ENSO–AIR relationship has been considered by
Pant et al. (1988) and more recently by Krishnamurthy
and Goswami (2000), Mehta and Lau (1997), and by
Krishna Kumar et al. (1999a,b). All of these studies
employed running correlation analysis and attempted to
relate changes in AIR to physical causes. Pant et al.
(1988) and Krishnamurthy and Goswami (2000) focus
on the decadal variability in AIR and offer explanations
involving natural modes of low-frequency climate var-
iability. Meta and Lau (1997) attribute similar variability
in AIR to the influence of solar irradiance. Krishna Ku-
mar et al. (1999a,b), on the other hand, claim that AIR
has been stable through history but has experienced a
breakdown in recent decades due to effects of global
warming.1

In what follows, we show that the waxing and waning
of the ENSO–AIR relationship is a recurrent phenom-
enon with interdecadal timescales. We show that the

1 Such studies are important for ongoing efforts to predict inter-
annual AIR variability using statistical predictors. Curiously, ENSO
is usually considered one of the most important predictors despite
the fact that AIR leads ENSO (Normand 1953; Yasunari 1990; and
Fig. 1a, this paper). Statistical forecasting efforts have traditionally
met with only intermittent success (see Webster et al. 1998; Krishna
Kumar et al. 1995), prompting deep questions into the nature of the
ENSO–AIR connection as in, for example, Webster et al. (1998).
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relationship between ENSO and a spatially broader rain-
fall index of the Asian monsoon is also characterized
by very strong decadal modulation. Furthermore, the
two Asian monsoon indices are themselves inconsis-
tently related. We present evidence that this type of low-
frequency modulation is common to pairs of time series
derived from noise processes, so that the physics of the
relationship need only be stochastic in character. A sta-
tistical test reveals that the level of such stochastic mod-
ulation of the ENSO–AIR relationship is significantly
lower than should be expected by chance.

2. Results

a. ENSO–AIR Relationship (EAR)

Both eastern and western tropical Pacific monthly
SST anomalies display strongest correlations with AIR
at considerable lags. Yasunari (1990) estimates maxi-
mum correlations with SST in the January and February
following the June–September AIR. Figure 1a shows
the evolution of the correlation between AIR and month-
ly Niño-3.4 (SST averaged over 58S–58N, 1708–1208W).
Based on our 124-yr observational record, maximum
correlations (r ø 20.6) occur in August–November,
remaining strong and stable until March of the following
year. June–July, however, is a transitional period when
the ENSO–AIR relationship is beginning to assert itself
as evidenced by rapidly strengthening negative corre-
lations. A similar plot with the Southern Oscillation
index in place of Niño-3.4, although noisier, shows ex-
actly the same monthly evolution in this long time frame
(not shown). In spite of this, recent studies of ENSO–
AIR correlations (Krishnamurthy and Goswami 2000;
Mehta and Lau 1997; Krishna Kumar et al. 1999a,b)
make use of ENSO indices contemporaneous with AIR
to study their relationship through time. In this study
we will use August–November Niño-3.4 as the pertinent
ENSO index.

Interdecadal variability of the ENSO–AIR relation-
ship (EAR) is evident when the correlation between their
indices is viewed in a sliding window. Figure 1b shows
these correlations in three sliding windows ranging in
width from 11 to 21 yr. Although correlations in various
windows do not always agree, the interdecadal swings
in the relationship are common to all sliding window
widths. The average between correlations in the three
sliding windows is computed at each central year and
smoothed with a running median nonlinear filter to ro-
bustly define interdecadal variability in EAR (thick line
in Fig. 1a). Decades of strong and significant correla-
tions, such as the 1890s and early 1900s, late 1930s to
late 1940s, and mid-1960s to late 1970s, alternate with
decades of apparently weak EAR. This low-frequency
evolution of EAR is robust to the choice of ENSO index
and sliding window width. A strong relationship per-
sisting for over a decade exhibits typical correlation
magnitudes of 0.7–0.8 (significant with 99% confidence

level estimated for even the narrowest window of 11
yr), alternating with epochs of considerably weaker cor-
relation.

b. Physical causes?

Interdecadal EAR modulation may be accomplished
through low-frequency variability in the large-scale
ocean–atmosphere system. However, detailed diagnostic
analyses of SST and atmospheric pressure fields did not
reveal any plausible physical causes. For example, no
significant relationships between EAR and tropical or
extratropical low-frequency climate modes could be de-
tected.

c. Typical behavior

The low-frequency modulation described above is not
unique to the ENSO–AIR relationship. Correlations be-
tween any pair of linearly related or unrelated climatic
time series that vary on interannual timescales will ex-
hibit low-frequency modulation. This is illustrated be-
low in the context of the Asian summer monsoon and
ENSO.

AIR may not be representative of the Asian summer
monsoon: the Indian subcontinent represents only a re-
gion of the area affected by the Asian monsoon. More-
over, AIR is unduly influenced by daily extremes (Ste-
phenson et al. 1999). Consequently, we have computed
an alternative index of Asian monsoon rainfall. Principal
components analysis (PCA) was applied to a southeast
Asian rectangle (208S–508N, 508–1308E) of the global
gridded June–September rainfall data from the Climatic
Research Unit, University of East Anglia, Norwich,
United Kingdom (Hulme et al. 1998). The leading prin-
cipal component (PC1) is defined as the monsoon rain-
fall index (MRI). It explains 15% of the summer-to-
summer (June–September) rainfall variability during the
period 1900–98 in southeast Asia, the spatial domain
of the PCA. MRI is most representative of rainfall in
eastern China, Indonesia/Malaysia, and India. The tem-
poral evolution of correlations between monthly Niño-
3.4 and MRI (not shown) closely corresponds to that
between monthly Niño-3.4 and AIR (Fig. 1a).

Running correlation of the ENSO–MRI relationship
(EMR) is displayed in Fig. 2b in an identical way to
EAR (Fig. 2a). Although the mean correlation over the
full record is similar (r ø 20.6), EMR is characterized
by much larger decadal variability than EAR, and the
temporal evolution of EMR seems to occur on longer
timescales. In any event, EAR and EMR themselves are
uncorrelated (r 5 0). Does this mean that a linear re-
lationship between the two indices of Asian monsoon
rainfall (AIR and MRI) is unstable on decadal time-
scales? The answer is clearly seen in Fig. 2c. In fact,
any two year-to-year measures of the Asian monsoon
will exhibit decadal swings in their running correlations.
AIR, for example, is known to exhibit unstable rela-
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FIG. 1. (a) Correlation of monthly Niño-3.4 SST with AIR. The slanted lines represent Jun–Sep, the season
when AIR is defined. Vertical dashed lines mark the beginning of a calendar year. Horizontal long dashed
lines are 99% confidence intervals. (b) Correlation between Aug–Nov (ASON) average Niño-3.4 and AIR in
sliding windows 11, 15, and 21 yr wide (thin solid, long, and short dashed lines, respectively). Horizontal
lines represent respective 99% confidence intervals. The thick solid line is a smoothed average of the correlations
in the three sliding windows. We take this line to represent the EAR.
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FIG. 2. (a) EAR (same as Fig. 1b) replotted on a common plotting region for easy comparison. The sliding correlation
analyses for different pairs of time series displayed in (b)–(f ) were performed in exactly the same manner. (b) ENSO–
MRI sliding correlation analysis (EMR); (c) AIR–MRI sliding correlation analysis: the thick line is an internal monsoon
coherence index; (d)–(f ) correlation analyses for random pairs of white noise time series correlated at the same level as
AIR and Niño-3.4 (see text).
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tionships with regional Asian monsoon circulation in-
dices (e.g., Parthasarathy et al. 1991). So, even the in-
ternal coherence of the Asian monsoon is decadally var-
iable. Parenthetically, this phenomenon is reproduced
by coupled ocean–atmosphere models (Gershunov et al.
1999).

d. Random processes

The presence of interdecadal modulation in relation-
ships between interannual modes is ubiquitous while its
physical causes remain elusive. Is it possible that no
physical causes exist per se, but that the modulation is
stochastically driven? We demonstrate that the simple
interaction of two Gaussian noise processes is consistent
with the result we have derived from the observations.

The ENSO and monsoon indices were tested for nor-
mality and independence. Normality was tested using
both the one-sample Kolmogorov–Smirnov (KS) test
and the chi-square goodness-of-fit test (x2). The p values
for Niño-3.4 and AIR are 0.74 and 0.53 according to
KS and x2, respectively. For AIR, the corresponding p
values are 0.40 and 0.46—in all cases too large to reject
the null hypothesis of normality at any reasonable con-
fidence level. Akaike’s information criterion was used
to estimate the ‘‘best’’ autoregressive model, which
turned out to be order zero for all indices. For example,
order-one autoregressive coefficients estimated from the
full 124-yr record of Niño-3.4 and AIR are 0.035 and
20.109, respectively, both statistically indistinguishable
from zero. Therefore, these indices can be considered
to be independent normal random variables.

Accordingly, we have simulated pairs of correlated
white noise time series x1(t) and x2(t), where x1(t) 5 «1

and x2(t) 5 cx1(t) 1 «2 with c being the overall cor-
relation coefficient between the relevant time series es-
timated from the full record (20.63 for EAR), «1 ;
N(0, 1) and «2 ; N(0, 1 2 c2). The variance of «2 is
1 2 c2 because x1 explains c2 of the variance of x2. The
total variance for both simulated time series is chosen
to be 1 for simplicity since differences in mean and total
variance have no effect on the results of running cor-
relation analyses.

Figures 2d–f display running correlations between
pairs of correlated white noise processes. Three simu-
lated cases, analyzed and displayed in exactly the same
manner as EAR, are adequate to give the flavor of pos-
sible outcomes. Based on these and 500 simulations in
a bootstrapping scheme (Efron 1982), described below,
we can make a major conclusion. The level of inter-
decadal variability in ENSO–AIR, ENSO–MRI, and
AIR–MRI relationships, as well as relationships be-
tween many other pairs of climatic time series, is no
larger than should be expected from pairs of Gaussian
noise processes. Physically, this means the modulation
can simply be considered as part of a stochastic process.
In other words, even though many physical processes
may be partially responsible for EAR modulation, it is

not possible to distinguish their effects from stochastic
noise in running correlation analyses.

From a sampling point of view, the low-frequency
variability in sliding correlations between random time
series should not come as a surprise. After all, small
sample correlations between two variables from popu-
lations correlated at some level will always fluctuate
around this level. Taking overlapping samples, as is
done in sliding correlation analysis, will produce
smoothly varying correlations. Statistically, this is an
obvious result, but one not fully appreciated in climate
research. Being aware of this behavior is important in
order to be able to separate signal from noise in com-
monly used running correlation analyses. Without such
awareness one may be tempted to look for physical
explanations to stochastic noise. Therein lies the danger,
for spurious relationships abound, especially when one
deals with low-frequency phenomena diagnosed in short
time series (Wunsch 1999). In general, the apparent
presence of trends and periodicities in short filtered ran-
dom time series is known as the ‘‘Slutsky–Yule effect’’
(Stephenson et al. 2000).

In the case of EAR, the decadal modulation is sig-
nificantly weaker than might be expected by chance.
Five hundred pairs of correlated white noise time series
of the same length as AIR and Niño-3.4 (124 yr) were
simulated for each correlation coefficient c 5 {0, 0.1,
0.2, . . . , 0.9}. Then, running correlation analysis was
applied to each pair of white noise time series for run-
ning window widths w 5 {5, 7, 9, . . . , 31} yr. Standard
deviations of the time series of running correlations
were then computed for each combination of running
window width and population correlation coefficient (w,
c). The 95th and 5th percentiles of the standard deviation
are summarized in Table 1. The standard deviations of
running correlations between observed time series must
be outside these limits to be considered significantly (at
the 95% confidence level in a one-tailed test) more or
less variable than expected from noise, that is, sampling
variability. The standard deviations (SDs) of running
correlations between the observed time series for the
11-, 15-, and 21-yr windows, respectively, are as fol-
lows: SDs of EAR are 0.119, 0.085, and 0.078; SDs of
EMR are 0.228, 0.212 and 0.205; and SDs of running
correlations between AIR and MRI [i.e., monsoon co-
herence index (MCI)] are 0.228, 0.195, and 0.190. The
reader is invited to verify using Table 1 (w 5 {11, 15,
21}, c 5 0.6) that EAR is significantly less variable
than expected from noise (SDs smaller than the 5th
percentile in Table 1b), while EMR and MCI are char-
acterized by standard deviations statistically indistin-
guishable from those expected from noise.

Of course, the above result holds if the bootstrapping
and testing is done on the smoothed indices of EAR,
EMR, and MCI. Table 1, however, provides a useful
reference, a rule of thumb for testing the significance
of swings in running correlations between time series
of roughly similar length that can be considered inde-
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TABLE 1. (a) 95th and (b) 5th percentiles of the bootstrapped standard deviation of running correlations as a function of running window
width and correlation coefficient. See text for bootstrapping scheme. Shading is proportional to the bootstrapped percentile magnitudes (white
5 0, black 5 1).

pendent normal. Most observed unfiltered annually re-
solved climatic time series fit this description.

For the relationship between ENSO and Indian mon-
soon rainfall, this analysis suggests existence of a set
of deterministic physics that partially stabilizes the
ENSO–AIR interaction so that it is the stability of EAR
that may require physical explanation, not the lack there-
of. It is also possible that EAR experienced larger de-
cadal swings before the instrumental record and may
experience larger swings in the future. In general, be-
cause of the shortness of the instrumental record, these

swings can appear deceptively deterministic, seem to be
correlated with other low-pass-filtered modes of climate
variability, or even look periodic, but in fact they do
not necessarily reflect more than typical stochastic be-
havior of random processes.

3. Conclusions

Relationships between any pair of observed inter-
annual climate modes are expected to fluctuate consid-
erably at lower frequencies in much the manner ex-
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pected of purely stochastic processes. While it is pos-
sible that some of this modulation is physically rooted
and may be predictable, much of it may be stochastic
and, hence, physically unpredictable. Before making
claims one way or the other, however, we suggest using
the bootstrap (Efron 1982) as an integral part of a run-
ning correlation analysis to test whether the low-fre-
quency modulation of a relationship between any two
time series is larger, smaller, more periodic, or in any
other way significantly unlike that which would be ex-
pected from two random time series with the same sta-
tistical properties. In the example presented here, EAR
tested to be more stable than would be expected from
pairs of white noise time series, suggesting that pro-
cesses limiting the level of stochastic variability in the
ENSO–AIR interaction need to be explained. Without
an explanation, we must assume that the instrumental
record is not representative of the true level of EAR
variability.

In any case, the expectation of large low-frequency
fluctuations in the relationship between any two climate
time series due specifically to random processes has
grave implications for climate predictability on season-
al–interannual timescales. More generally, the existence
of such stochastically driven low-frequency modulation
suggests that much caution is needed in physically in-
terpreting relationships between interannual and other
‘‘high-frequency’’ climate modes.
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