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Abstract We examined trends in accumulated winter chill across the fruit growing region
of central California and its internal coastal valleys. We tested the hypothesis that global
warming is in motion in California and is causing accumulated winter chill to decrease
across the fruit and nut growing regions of California. The detection of potential trends in
accumulated winter chill (between 0 and 7.2°C) was determined using two complementary
climate datasets. The California Irrigation Management Information System (CIMIS)
contains hourly climate data and is suitable for computing accumulated chill hours and
chill degree-hours. But, its longest data records extend back only to the 1980s. The
National Weather Service Coop climate record is longer, extending beyond the 1950s at
many sites. But its datasets only contain information on daily maximum and minimum
temperatures. To assess long term trends in winter chill accumulation, we developed an
algorithm that converted information from daily maximum and minimum temperature into
accumulated hours of winter chill and summations of chill-degree hours. These inferred
calculations of chill hour accumulation were tested with and validated by direct
measurements from hourly-based data from the CIMIS network. With the combined
climate datasets, we found that the annual accumulation of winter chill hours and chill
degree hours is diminishing across the fruit and nut growing regions of California.
Observed trends in winter chill range between -50 and -260 chill hours per decade. We also
applied our analytical algorithm to project changes in winter chill using regional climate
projections of temperature for three regions in the Central Valley. Predicted rates of reduced
winter chill, for the period between 1950 and 2100, are on the order of -40 h per decade.
By the end of the 21st century, orchards in California are expected to experience less than
500 chill hours per winter. This chronic and steady reduction in winter chill is expected to
have deleterious economic and culinary impact on fruit and nut production in California by
the end of the 21st Century.
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1 Introduction

California’s diverse geography and microclimates enables it to serve as a venue for more
than 350 field and vegetable crops and fruit and nut trees. From the perspective of the
United States, California is nearly the sole producer of a large number of desirable and
valuable fruits, nuts and vegetables. For example, California produces over 95% of the
United State’s apricots, almonds, artichokes, figs, kiwis, raisin grapes, olives, cling peaches,
dried plums, persimmons, pistachios, olives, and walnuts (Anonymous 2003). And among
this list, nuts and fruits like almonds and grapes have an annual economic value exceeding
a billion dollars, each (Anonymous 2003).

California’s ability to produce a large and diverse number of fruits and nuts stems, in
part, from the Mediterranean climate that is experienced in many of its fertile interior
valleys. There, typical climate conditions include a long growing season with ample
sunshine and rainy, cool winters. The rainless summer provides ample sunshine for growth
and inhibit infection by disease (Gutierrez et al. 2006). The cool wet winter period is
dominated by a succession of winter storms from the Pacific ocean and is maintained
between storms by periods of fog in many of the interior valleys (Holets and Swanson
1981; Suckling and Mitchell 1988; Underwood et al. 2004). Winter rain replenishes the soil
reservoir and melt-water, from the snowpack on the surrounding Cascade and Sierra
Nevada mountains, runs off and is stored in dams. This water is distributed during the
growing season via a network of aqueducts and canals to provide irrigation water to the
orchards during the rainless summers.

The sustenance of this rich, diverse and complex agricultural system is perceived to be
vulnerable because the current climate in California is expected to warm over the next 50 to
100 years (Cayan et al. 2005; Hayhoe et al. 2004). The degree of warming will depend
upon future patterns of fossil fuel combustion, deforestation, population growth,
technological innovations. Based on various carbon emission scenarios, future CO2 levels
are expected to range between 600 and 1,000 ppm by 2100 and are expected to cause a 3 to
5°C increase in the mean global temperature (Friedlingstein et al. 2003; Fung et al. 2005).
At the regional scale, climate simulations for California predict that a doubling of pre-
industrial CO2 levels, from 280 to 560 ppm, will produce up to a 3 to 4°C warming
(Hayhoe et al. 2004; Izaurralde et al. 2003; Snyder et al. 2002). Regional climate
simulations also predict a decrease in the extent and amount of winter snowpack on the
mountains of California.

Regional analyzes of climate trends over agricultural regions of California and the
western United States suggest that climate warming is already in motion. Cayan et al.
(2001) analyzed data on the springtime blooming of lilac, a proxy for climate, and found
that spring blooming is occurring earlier than in the past. These data provides indirect
evidence that a warming trend is occurring across the western United States. Feng and Hu
(2004) and McKenney et al. (2006) evaluated trends in agricultural climate statistics that
were generated from a national climate monitoring network and database. They found that
the growing season is lengthening by about a day per decade across North America and
California (Feng and Hu 2004; McKenney et al. 2006). In regional climate analysis,
Nemani et al. (2001) reported a warming trend in annual average temperature, exceeding 1°C
over 47 years, along the coastal region of northern California. This warming was associated
with a 20 day reduction in the last day of frost occurrence and a 65 day increase in the frost
free growing period. And most recently Christy et al. (2006) examined daily maximum and
minimum temperatures for stations in the irrigated San Joaquin Valley and the adjacent
Sierra Nevada range. They report that minimum temperatures in the San Joaquin Valley,
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over the period between 1910 and 2003, are increasing by 0.25°C per decade. They,
however, attribute these trends partially to changes in land use, which alter albedo, sensible
heat transfer and evaporation.

A previous analysis on agricultural-climate interactions for California, by Hayhoe et al.
(2004), focused primarily on trends in mean temperature. With respects to the functioning
of vegetation and crop systems, mean temperature is not always the most significant and
critical climate statistic to examine. More relevant climate statistics involve thresholds at
the upper and lower tail of the probability distribution and information on the timing of
certain temperature regimes (Porter and Semenov 2005). For example, phenology, the
science that studies the timing of flowering, leaf expansion and fruit set, accelerates when
winter minimum temperatures increase (Chmielewski et al. 2004). Crops yields can be
ruined if frost occurs during the flowering and pollination period. Fruit quality can degrade
if there is an extreme heat spell during the fruit-set period, such as the common burning of
walnuts. And insect and disease infestations are more apt to occur if winter cold exposure is
not sufficient (Gutierrez et al. 2006; Rosenweig and Hillell 1998).

We are concerned with the detection of trends in an agricultural temperature statistics
buried within long-term climate data. These are the accumulation of chilling temperature
and chilling hours during the winter period. Our interest in this topic is based on the fact
that an extended period of cool temperatures, below a threshold temperature, is required for
fruit trees to become and remain dormant and subsequently set fruit (Aron 1983). Winter
chill is computed either as the number of hours below a critical temperature (chill hours) or
in terms of the summation of the degrees below a critical temperature (chilling degree
hours) (Aron 1975; Richardson et al. 1974.; Snyder et al. 1999; Zalom et al. 1983). In
general, fruit tree species need to experience between 200 and 1,500 h below a base of

Table 1 Number of hours below a threshold temperature required for dormancy for a selection of fruits and
nuts

Fruit or Nut Chill hours neededa

Almond 400–700
Apricotb 350–1,000
European pear 600–1,500
European plum 700–1,800
Fig 100–500
Grape 100–500
Kiwib 400–800
Kiwi ‘Twei’ (female) 0–200
Kiwi ‘Vincent’ (female) 0–200
Nectarineb 200–1,200
Peachb 200–1,200
Persimmon 100–500
Pistachio 800–1,000
Pomegranate 100–200
Quince 100–500
Raspberryb 100–1,800
Sweet cherry (most) 600–1,400
Walnutb 400–1,500

Australasian Tree Crops Source Book, http://www.aoi.com.au/atcros/LM.html
a Chill hours means accumulated cold-season hours below 7°C
b Low-chill varieties exist which need less chilling
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7.22°C (or 45°F) during the winter to produce flowers and fruit (Egea et al. 2003; Rattigan
and Hill 1986; Samish 1954). For additional information, a compilation of chill
requirements for a selection of fruit and nut trees grown in California is listed in Table 1.

Under current climate conditions this dormancy is met, in part, because prolonged
periods of fog occur during the winter in the Central Valley of California (Holets and
Swanson 1981;Suckling and Mitchell 1988; Underwood et al. 2004) and enable the fruit
and nut trees to experiences a sufficient period below the critical temperature threshold
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Fig. 1 Schematic of the idealized mean diurnal temperature course. Line a is 6 h in length, line b is the
distance between average and minimum temperatures, line c is the distance between the reference and
minimum temperature and line d is one-half the duration that temperature is below the reference temperature
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(7°C). In the event of climate warming we hypothesize that regional and global warming
will reduce the accumulated number of chill degree-hours and chill hours in the fruit and
nut growing region of California. Moreover, the change in temperature may not be
gradual. If prolonged periods of winter fog disappear, the Central Valley may experience
larger diurnal swings in winter temperature and fewer hours below the critical
temperature. If true, sustained production of high value nuts and fruits like almonds,
cherries, and apricots, will be in jeopardy and deleterious economic, culinary and social
consequences could occur.

In this paper, we examine trends in accumulated winter chill across the fruit and nut
growing region of the Central Valley in California and its internal coastal valleys. We then
apply our analysis to regional climate projections of temperature for three regions in the
Central Valley for the period between 1950 and 2100. The hypothesis we are testing is that
global warming is in motion and accumulated winter chill is decreasing across the fruit
growing region of California.

2 Materials and methods

We based our analysis on a combination of hourly and daily climate data. The source of
hourly climate data is the California Irrigation Management Information System (CIMIS) and
the source of daily climate data is the National Weather Service Cooperative Network. Both
datasets are available through the California Climate Archive (http://www.calclim.dri.edu/).
The CIMIS data is ideal for computing accumulated winter chill hours. Unfortunately its data
record is of a relatively short duration, starting in the 1980s, to be used for performing an
extended climate analysis. The NWS coop database, on the other hand, allows us to investigate
longer climate trends because many sites go back to the 1930s. But this database only produces
information on daily maximum and minimum temperature. To alleviate the distinct negative
attributes of two databases and utilize their respective positive attributes, we first develop an
analytical equation for computing accumulated chill hours and chill degree-hours from
maximum and minimum temperature measurement. Next we test and validate it against hourly
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climate data. Then apply the algorithm to the longer Coop data record to examine if there are
significant and negative trends in chill hours and chill degree-hours.

Winter chill-degree hours (Cd,h) and chill hours (Ch) were summed between November 1
and Feb 28. On a daily basis the number of chill hours is computed relative to a reference
temperature, in this case 7.22°C or 45°F:

Cd;h ¼
X24

0
Tref � T tð Þ ð1Þ

Temperature differences were not summed if air temperature was below freezing or
above the reference level.

Table 2 Listing of the climate stations used in the analysis and regression statistics for the temporal trends in
chill degree-hours and chill hours

Lat Long Start year Chill degree hours Chill hours

Slope R2 P Slope r2 P

Angwin Cp 38.56 –122.43 1953 –12.7 0.032 NS –2.62 0.0174 NS
Antioch Cp 37.997 –121.808 1949 –4.4 0.01 NS –0.193 0.00016 NS
Brentwood Cm 37.938 –121.695 1987 –69.3 0.27 * –26.4 0.379 **
Camino Cm 38.750 –120.730 1984 26.1 0.03 NS 5.9 0.02 NS
Castroville Cm 36.770 –121.770 1983 –103.3 0.34 ** –35.1 0.298 *
Chico Cp 39.700 –121.810 1932 –7.116 0.0417 NS –3.618 0.0811 *
Coalinga Cp 36.150 –120.350 1940 –15.28 0.227 ** –4.511 0.213 **
Colusa Cm 39.230 –122.020 1983 –167.5 0.59 ** –38.2 0.451 **
Davis Cm 38.540 –121.780 1982 –82.9 0.37 ** –24.3 0.379 **
Durham Cm 39.610 –121.820 1983 –44.6 0.19 * –15.6 0.231 *
Firebaugh Cm 36.85 –120.59 1982 –62.0 0.32 ** –18.75 0.278 **
Fivepoints Cm 36.340 –120.110 1982 –55.6 0.26 * –12.9 0.168 *
Fivepoints Cp 36.340 –120.110 1955 –40.6 0.47 ** –10.47 0.344 **
Gerber Cm 40.050 –122.160 1983 –68.1 0.32 ** –25.1 0.352 **
Healdsburg Cp 38.619 –122.860 1932 –10.9 0.17 ** –2.78 0.136 **
Kettleman Cm 35.870 –119.890 1983 –70.42 0.36 ** –22.5 0.33 **
Livermore Cp 37.730 –121.690 1982 –45.84 0.38 ** –12.25 0.301 **
Los Banos Cm 37.090 –120.760 1989 –36.5 0.03 NS –13.6 0.034 NS
Manteca Cm 37.840 –121.220 1987 –28.7 0.03 NS –7.44 0.020 NS
Modesto Cm 37.650 –121.190 1987 –78.4 0.25 * –26.48 0.272 *
Nicholaus Cm 38.870 –121.550 1983 –80.8 0.18 NS –26.65 0.201 NS
Orland Cp 39.740 –122.170 1949 –23.01 0.25 ** –6.711 0.234 **
Parlier Cm 36.600 –119.500 1983 –59.01 0.24 * –16.56 0.2 *
Red Bluff Cp 40.177 –122.260 1959 –23.9 0.06 NS –6.33 0.033 NS
Shafter Cm 35.530 –119.280 1983 –59.0 0.25 * –11.51 0.127 NS
Stratford Cm 36.160 –119.850 1983 –56.34 0.191 * –16.24 0.161 NS
Tracy Cp 37.710 –121.460 1958 –25.2 0.26 ** –7.15 0.205 **
Visalia Cm 36.300 –119.220 1983 –64.4 0.27 * –18.9 0.242 *
Winters Cp 38.525 –121.970 1952 –18.7 0.19 ** –5.51 0.177 **
Woodland Cp 38.670 –121.680 1958 –31.1 0.31 ** –9.02 0.271 **
Zamora Cm 38.810 –121.910 1983 –59.8 0.25 * –19.55 0.219 *

CP denotes data from a Coop Station and CM represents data from a CIMIS Station. The regression slopes
are tested for being significantly different from zero at the 5% and 1% probability level. Regression
coefficients that are not significantly different from zero are denoted as NS.

*P<0.05 at the 5% level; **P<0.01 at the 1% level
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To compute cumulative chill degree hours from maximum and minimum air temperature
measurements, we applied trigonometric concepts to an ideal diurnal temperature course
(Snyder et al. 1999; Zalom et al. 1983). First we assumed that the diurnal temperature course
can be described by two adjoined triangles, one between the daily mean and the minimum
temperature and the other between the daily mean and the maximum temperature (Fig. 1). We
know the length of segment a is 6 h and the length of segment b is the difference between the
daily average and minimum temperatures. So we can compute the tangent of the angle θ as:

tan q ¼ a

b
¼ 6hr

Tave � Tmin
¼ d

c
¼ d

Tref � Tmin
ð2Þ

The length of segment c is the difference between the reference and the minimum
temperatures, so we can compute the length d, which is one-half the time below the
reference temperature.

d ¼ tan q � Tref � Tmin

� � ð3Þ
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Fig. 4 Long term trend in accu-
mulated chill hours (top panel)
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are derived from the National
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The number of chilling hours (Ch) accumulated over a day is then computed as 2 times d.
If Tmin is below freezing we are then interested in hours between Tref and 0°C. In this
situation we compute the freezing duration.

f ¼ 2 � tan q � Tfreeze � Tmin

� � ð4Þ
We then compute the chilling period as the difference between 2 times d (Eq. 3) and f (Eq. 4).

With information on Ch in hand, we next computed the summed chill degree hours (Cd,h),
which is related to the area under the curve delineated in Fig. 1 bounded below line d.X

Cd;h ¼ d � 2 � Tref � Tmin
� � ð5Þ

To evaluate how well this method works we compared estimates of daily chill hours
based minimum and maximum temperature data with observations based on hourly
meteorological data. A test case is shown in Fig. 2 for Zamora, CA. There is a slight bias
between the two measures (slope is 0.905 and the intercept is 0.87), but overall the
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correspondence between the two metrics is quite good (r2=0.805). Next, we examine if this
set of equations is suitable for the ensuing analysis by comparing the number of chill hours
accumulated over the winter based on hourly meteorological data and minimum and
maximum temperature data for a test case, Zamora, CA. Figure 3 shows excellent
correspondence between accumulated winter chill based on hourly and daily maximum and
minimum air temperature measurements (slope=0.998; intercept=15.0; r2=0.887). In sum,
the simple trigonometric relationships convert data from daily maximum and minimum
temperatures into information that is produced with temperature data on hourly temporal
resolution.

2.1 Climate scenarios

We investigate future trends in winter chill hours using regional climate projections for
California based on the NCAR Parallel Climate model (PCM1) and NOAA’s Geophysical
Fluid Dynamic Laboratory (GFDL/CM2.1) climate models (Cayan et al. 2005). One case
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involves the B1 emission scenario, that was derived for the Intergovernmental Panel on
Climate Change (IPCC) assessment (Nakicenovic et al. 2000). It expects CO2 to reach
500 ppm by 2100. The other case is the A2 emission scenario which expects CO2 to reach
900 ppm by 2100. Grid-scale climates were disaggregated from the regional grid point and
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corrected to three locations up and down the Central Valley (Red Bluff, Davis and Fresno)
with a technique developed for adjusting GCM output for long-range streamflow
forecasting (Wood et al. 2002). The method was originally developed for studies examining
the hydrologic impacts of climate change (Maurer and Duffy 2005; VanRheenan et al.
2004).
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3 Results and discussion

3.1 Current trends in chill hours and chill degree hours

Using hourly data from the CIMIS project, we computed trends in accumulated chill hours
and chill degree-hours at over thirty sites in the Central Valley and coastal valleys (Table 2).
Results from an individual case are shown in Fig. 4. This site is near Orland, a location
situated in the northern Sacramento Valley, and is an area surrounded with almond and
olive orchards. The climate data set for the coop station near Orland started in 1948. At this
station, significant and negative trends in both chill hours (Fig. 4a) and chill-degree hours
(Fig. 4b) are evident in the 50 year climate record.

Applying this analysis to the thirty plus climate stations across the fruit growing valleys
of California, we were able to produce maps of trends in chill hours (Fig. 5) and chill
degree hours (Fig. 6). Most sites (except 8) are experiencing a significant and negative
trend in winter chill hours with time (Table 2). In general, orchards are experiencing a loss
in winter chill that ranges between 50 and 500 h per decade and between 100 and 1,000
degree-hours per decade. The greatest rates of change are interspersed throughout the
Central Valley, as are sites with no significant trends. So no specific geographic pattern was
detected with regards to where winter warming is and is not occurring.

The length of individual climate records did not have an influence on whether or not the
regression slope was significantly different from zero. Both short and long climate records
revealed cases with significant and insignificant trends in chill accumulation.

3.2 Future trends in chill hours and chill degree hours

To evaluate future trends in accumulated winter chill-degree hours, we applied our
algorithm to time series of projected maximum and minimum temperatures in the Central
Valley for the period between 1950 and 2100. Figure 7 shows negative trends in
accumulated chill hours for the B1 scenario for Red Bluff, Davis and Fresno, sites in the
north, central and southern portions of the Valley. These representative field sites are
expected to lose between 3 and 3.5 chill hours per year. A greater loss in winter chill is
expected with the A2 climate scenario. Figure 8 shows that sites across the Central Valley
of California will lose between 4.3 and 4.5 chill hours per year.

Data derived from the climate model computations show that winter chill hours will
continue to decrease from a baseline near 1,000 h, as observed in 1950, to about 500 h by
2100. Both climate scenarios indicate that the local winter climate will approach the critical
thresholds of chill needed for winter dormancy by many value fruit and nut trees species
(Table 1). In the future, one may need to substitute fruit species that need less chill hours (e.g.
peaches for almonds) or develop new cultivars that require less winter chill.

Not considered well in the models, but superimposed upon the green-house effect
evident in the measurement record, is the large scale effect of converting the Central Valley
from a semi-arid grassland or desert into irrigated landscape. This land conversion causes
the surface to have a lower albedo and more available energy for evaporating water and
heating the air. Greater transpiration increases the humidity in the planetary boundary layer
(McNaughton and Spriggs 1986), which enhances the downward directed longward energy
flux (Christy et al. 2006; Monteith and Unsworth 1990). Together, these factors will
contribute to warmer nights during the growing season. But the cited effects of land use
conversion on the California climate should be greatest during the growing season, and
secondary during the winter dormant period.
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In closing significant and negative trends in accumulated winter chill are being observed
across California and are projected to continue into the near and distant future. The
production of high value fruits and nuts could be in jeopardy unless efforts are made to
stem global warming, develop cultivars that require less winter chill or move orchards to
higher elevations in the coastal and Sierra Nevada foothills.
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