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ABSTRACT 25 

Sixteen global general circulation models were used to develop probabilistic projections of 26 
temperature (T) and precipitation (P) changes over California by the 2060s. The global models 27 
were downscaled with two statistical techniques and three nested dynamical regional climate 28 
models, although not all global models were downscaled with all techniques. Both monthly and 29 
daily timescale changes in T and P are addressed, the latter being important for a range of 30 
applications in energy use, water management, and agriculture. The T changes tend to agree more 31 
across downscaling techniques than the P changes. Year-to-year natural internal climate variability 32 
is roughly of similar magnitude to the projected T changes. In the monthly average, July 33 
temperatures shift enough that that the hottest July found in any simulation over the historical 34 
period becomes a modestly cool July in the future period. Januarys as cold as any found in the 35 
historical period are still found in the 2060s, but the median and maximum monthly average 36 
temperatures increase notably. Annual and seasonal P changes are small compared to interannual 37 
or intermodel variability. However, the annual change is composed of seasonally varying changes 38 
that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly 39 
wetter conditions in the North of the state, while spring and autumn show less precipitation. The 40 
dynamical downscaling techniques project increasing precipitation in the Southeastern part of the 41 
state, which is influenced by the North American monsoon, a feature that is not captured by the 42 
statistical downscaling.  43 
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1. Introduction 44 

California has a confluence of factors that make it particularly vulnerable to 45 

anthropogenically-induced climate change (e.g., Hayhoe et al. 2004, Cayan et al. 46 

2006). Warming and precipitation changes will directly impact crops and pests in 47 

the agricultural and wine-producing regions, and affect regional water resources 48 

and flood risk through changes in the snow line, snowpack, and 49 

evapotranspiration. Indeed, anthropogenic effects can already be seen in the 50 

temperature and hydrology of the western U.S. (Barnett et al. 2008, Pierce et al. 51 

2008, Bonfils et al. 2008, Hidalgo et al. 2009, Das et al. 2009; cf. Maurer et al. 52 

2007, who examined a smaller region). 53 

The primary purpose of this work is to present projections of temperature (T) and 54 

precipitation (P) change over California by the 2060s in a probabilistic framework 55 

(e.g. Manning et al. 2009; Chen et al. 2011), which facilitates risk-based planning 56 

and provides a framework for adaptive resource management (e.g., Anderson et 57 

al. 2008, Brekke et al. 2009). Global climate models (GCMs; Meehl et al. 2007) 58 

do not uniformly sample model uncertainties, and are not independent (Pennell 59 

and Reichler, 2011). Therefore the distributions shown here are not true estimates 60 

of the probability of future climate changes, rather are best-guess estimates of 61 

future climate change given current simulations. We compare our projections of T 62 

and P changes to natural internal climate variability, so that the relative magnitude 63 

of the two can be assessed. 64 

Spatial downscaling is necessary in California, which is topographically complex. 65 

We use daily results from two GCMs dynamically downscaled with three different 66 

regional climate models; the same two global models plus two more statistically 67 

downscaled on a daily timescale; and the same 4 models plus 12 more (some with 68 

multiple ensemble members) statistically downscaled by a different technique on a 69 

monthly timescale. In total, we incorporate data from 45 runs originally generated 70 

by 16 different global models. The secondary purpose of this work is to compare 71 

the climate projections from the dynamical and statistical downscaling techniques 72 

and address how they systematically differ. Natural internal climate variability is 73 
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included to the extent that the original GCMs simulate it (cf. AchutaRao and 74 

Sperber, 2006).  75 

Climate change over California has been extensively studied using some 76 

combination of single or multiple GCMs and statistical or dynamical downscaling 77 

(e.g., Dickinson et al. 1989; Giorgi et al. 1994; Pan et al. 2001; Kim 2001 and 78 

2005; Snyder et al. 2002; Hayhoe et al., 2004; Leung et al. 2004; Brekke et al. 79 

2004; Maurer and Duffy 2005; Snyder and Sloan 2005; Duffy et al. 2006; Maurer 80 

2007; Liang et al. 2008; Caldwell et al. 2009; Chin et al. 2010). Some common 81 

themes emerge from these efforts. First, different GCMs produce different 82 

warming and precipitation changes. Second, regional climate models (RCMs) 83 

introduce another source of variation, even with the same driving GCM.  Third, 84 

temperature changes over California are consistently positive, but precipitation 85 

changes vary in sign. Fourth, even with the divergent precipitation projections, the 86 

effect on California’s hydrology is substantial; snowpack declines and runoff 87 

shifts to earlier in the water year, with elevation-dependent effects due to the 88 

colder temperatures at higher elevations. And fifth, all model simulations exhibit 89 

biases, which are assumed to systematically affect the projected climate as well. 90 

Given this body of previous work, it is perhaps surprising that major gaps remain. 91 

Few of the studies approached the problem probabilistically, and only Leung et al. 92 

2004, Hayhoe et al. 2004, and Kim 2005 analyze the future daily data, which is 93 

critical to energy use, agriculture, ecology, flooding, and water management. 94 

Finally, none of the studies used both statistical and dynamical downscaling and 95 

compared the two (cf. Hay and Clark 2003, who used both, but over the historical 96 

period only and examined runoff rather than T and P). Similar issues have been 97 

addressed in other regions; for example, Europe in the PRUDENCE (Christensen 98 

et al., 2007) and ENSEMBLES (Kjellstrom and Giorgi, 2010) projects, and the 99 

UK with the Climate Projections project 100 

(http://ukclimateprojections.defra.gov.uk/).  101 

Pierce et al. (2009) examined 40-year periods over the western U.S., and found 102 

that 14 runs developed from 5 global models reliably conveyed the information 103 

from the full set of 21 CMIP-3 model results. The bulk of results shown here are 104 

generated using monthly data from all 45 runs (developed from 16 global models), 105 
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so should be reliable even though the spatial and time scales considered here are 106 

somewhat smaller than used in Pierce et al. (2009) (California vs. the western 107 

U.S., 10-yr vs. 40-yr periods) and natural internal variability becomes more 108 

evident at smaller scales (e.g., Hawkins and Sutton 2010). However the analysis 109 

shown here was also done with a subset of 25 runs (excluding multiple ensemble 110 

members for any single model) and the results were little different, which suggests 111 

that our sampling of available climate model ensemble members is adequate.  112 

Some of our results are from the 9 daily runs developed from 4 global models, 113 

which falls short of the ideal number of runs and global models to use. However 114 

Pierce et al. (2009) demonstrates that the large majority of the increase in multi-115 

model ensemble averaged skill occurs when going from 1 to 4 global models. We 116 

therefore believe that the daily results shown here, obtained from the 9 runs 117 

(incorporating information from 4 global models), are both a credible first analysis 118 

of the problem and a roadmap showing how the multi-model probabilistic 119 

treatment could be extended with additional runs in the future. 120 

2. Data and Methods 121 

We used dynamical downscaling with 3 regional climate models (RCMs): the 122 

Regional Climate Model version 3 (RegCM3), which is derived from NCAR’s 123 

MM5 mesoscale model (Pal et al. 2007); the NCAR/NCEP/FSL Weather 124 

Research and Forecasting (WRF) model (Skamarock et al., 2008); and the 125 

Regional Spectral Model (RSM, Kanamitsu et al., 2005), which is a regional 126 

version of the National Centers for Environmental Prediction (NCEP) global 127 

spectral model. Details of the RCMs are given in the Supplemental Material, 128 

section 1. Miller et al. (2009) examined the ability of the RCMs used here to 129 

simulate California’s historical climate when driven with boundary conditions 130 

from the NCEP reanalysis II (Kanamitsu et al. 2002), and compared their 131 

climatology to observations. That work concluded that all the models have 132 

limitations, particularly in parameterized process such as cloud formation, but that 133 

“they perform as well as other state-of-the-art downscaling systems, and all do a 134 

credible job simulating the historical climate of California” (see also the 135 

supplementary information).  136 
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We used two methods of statistical downscaling: Bias Correction with 137 

Constructed Analogues (BCCA; Hidalgo et al., 2008; Maurer et al. 2010), and 138 

Bias Correction with Spatial Disaggregation (BCSD; Wood et al. 2002, 2004) 139 

These methods were compared in Maurer and Hidalgo (2008), who concluded that 140 

they have comparable skill when downscaling monthly fields of temperature and 141 

precipitation. However only BCCA preserves the daily sequence of original global 142 

model variability, which is of interest here. Details of the statistical techniques are 143 

given in the Supplemental Material, section 2. Some of the BCSD ensemble 144 

members were downloaded from the Bias Corrected and Downscaled WCRP 145 

CMIP3 Climate Projections archive at http://gdo-146 

dcp.ucllnl.org/downscaled_cmip3_projections (Maurer et al., 2007). 147 

All downscaling is to an approximately a 1/8O x 1/8O (~ 12 km) spatial resolution. 148 

Table 1 lists the various models and number of ensemble members used for each 149 

downscaling technique. Not all GCMs were downscaled with all techniques, 150 

because of the computer time required and lack of daily data for all the GCMs. 151 

Only limited time periods were covered: 1985-94 (the “historical period”) and 152 

2060-2069 (the “future period”). Also, only the SRES A2 emissions scenario is 153 

used. We note that the 2060s is about the last decade where globally averaged 154 

surface temperatures from the A2, B1, and A1B emissions scenarios do not show 155 

a clear separation (IPCC 2007). For the dynamical and BCCA downscaling, 156 

CMIP-3 ensemble number 1 was used when more than one ensemble member was 157 

available. 158 

The 10-year spans are too short to examine natural climate variability from El 159 

Nino/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) in 160 

any one model run. However, we partially make up for this by using 4 to 16 161 

models at a time (depending on the downscaling technique). Natural internal 162 

climate variability due to ENSO and the PDO is not synchronized across model 163 

runs due to the chaotic nature of the atmosphere. So, for example, one model run 164 

might be simulating positive ENSO conditions in model year 2065 while another 165 

model run might be simulating negative ENSO conditions. Although both ENSO 166 

and the PDO affect California temperature and precipitation, averaging across 167 

unsynchronized runs randomly samples different phases of these phenomena, 168 

which reduces the net effect of they have on our estimates of anthropogenic 169 
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climate change by the 2060’s. We do not discard these estimates of natural 170 

variability; rather we compare our estimates of anthropogenic climate change to 171 

the magnitude of this natural variability so that a better understanding of the 172 

relative magnitude of each can be obtained. 173 

Results are presented as averages over the 11 California climate regions identified 174 

by Abatzoglou et al. (2009). These regions do a better job representing 175 

California's diverse mix of climate regimes than the standard U.S. climate 176 

divisions. 177 

2.1 Bias correction 178 

All T and P fields, whether downscaled statistically or dynamically, underwent a 179 

bias correction procedure (Panofsky and Brier 1968; Maurer et al. 2002; Wood et 180 

al. 2002, 2004; Maurer 2007; Maurer et al. 2010). This is necessary because the 181 

project’s focus was on hydrological and other applications, and even current state-182 

of-the-art GCMs/RCMs generate T and P fields with biases, often due to biases in 183 

the original global fields (e.g., Wood et al. 2004, Duffy et al. 2006, Liang et al. 184 

2008). Details of the bias correction procedure are given in the Supplemental 185 

Material, section 3.  186 

3. Results 187 

The probabilistic framework requires that several model runs be included to 188 

provide a distribution of projected outcomes. In this work we weight all 189 

combinations of global model and downscaling technique equally (except for the 190 

multiple ensemble members available from a single global model using BCSD, as 191 

described below), following the approach used in the last IPCC assessment (IPCC, 192 

2007). Pierce et al. (2009) looked specifically at the western U.S. and concluded 193 

that weighting by model quality does not make a difference to climate projections 194 

until after the time period considered here (the 2060s).  195 

BCSD was the only downscaling technique that had multiple downscaled 196 

ensemble members available from the same global model (Table 1). When 197 

analyzing mean quantities, we combined multiple BCSD downscaled results from 198 
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the same global model into a single model mean before analysis, so that each 199 

global model contributes equally to the BCSD result despite the disparate number 200 

of ensemble members. When computing variability measures this averaging is not 201 

appropriate, since averaging reduces the range of variability. In these cases we 202 

used a Monte-Carlo approach, constructing 1000 random sets of BCSD results 203 

where each model contributed one randomly picked ensemble member. Results 204 

shown here are the average obtained across the 1000 random trials. In practice 205 

however this makes little difference, as the BCSD results are well sampled even 206 

excluding the extra ensemble members. 207 

3.1 Temperature changes 208 

Figure 1 (upper) shows the temperature changes by the 2060s, averaged across all 209 

models and downscaling techniques. The yearly-averaged warming is on the order 210 

of 2.4 C. The coastal regions experience less warming due to the ocean’s 211 

moderating influence, with a typical value of about 1.9 C. Inland locations show 212 

warming approaching 2.6 C, which may have the potential to suppress coastal 213 

warming further via enhanced sea breezes in some locations (Snyder et al. 2003; 214 

Lebassi et al. 2009). The lower panels of Fig. 1 show climatological fields for 215 

reference. 216 

The mean warming has a pronounced seasonal signature, with the most warming 217 

(~3 C) in the summer (June-July-August), and the least warming (< 2 C) in the 218 

winter (Dec-Jan-Feb). Since energy use in California is dominated by summer 219 

cooling loads rather than winter heating loads, this warming pattern suggests that 220 

peak energy use could increase faster than would be expected if only the yearly 221 

averaged temperature changes were taken into account. 222 

Figure 2 shows the change in individual monthly distributions of temperature, 223 

displayed as a mapping between historic and future percentiles. For example, the 224 

blue cross in panel a for the Sacramento/Central valley shows that the 50th 225 

percentile temperature in the historical period (x axis) will become the 17th 226 

percentile value in the 2060s (y axis). The curves in Fig. 2a start at the origin, 227 

which means that the coldest January monthly average temperatures in the 228 

historical period will still be experienced in the 2060s.  Relative to the evolving 229 
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mean, the coldest months become much more dramatic in the future, which might 230 

have implications for moving to crops better adapted to hotter conditions. Of the 231 

45 runs (Table 1), 16 have at least one January in the 2060s that is about as cold, 232 

or colder, than the coldest historical January in the same model. Despite this, Fig. 233 

2a shows that the median monthly January temperature in the future will be 234 

warmer than 8 or 9 out of 10 Januarys today, and the warmest Januarys in the 235 

future are completely off the historical distribution.  236 

In July (Fig. 2b), the curves still start nearly at the origin, but inspection showed 237 

that such a cold July only existed in two of the 45 runs. On the other hand, the 238 

difference in the warmest months is profound. Over most of the state, the warmest 239 

monthly average July found in the entire historical distribution of any model is 240 

only a 15-40th percentile event in the future period. I.e., a July that is record-241 

breaking hot by current historical standards will become modestly cool in 242 

comparison to the new mean. 243 

The yearly warming simulated by the various downscaling techniques is shown in 244 

Fig. 3. Results are illustrated for the GFDL 2.1 and CCSM3 global models. Global 245 

model results are displayed in Fig. 3f and 3k for comparison. The downscaling 246 

techniques generate similar values, and capture the decrease in warming near the 247 

coast that is poorly resolved in the global field. BCCA produces a somewhat 248 

weaker trend than the other methods for GFDL, although not for CCSM3 (cf. 249 

Maurer and Hidalgo (2008), their Fig. 5).  250 

3.1.1 Distributions of seasonal temperature change 251 

The exceedence probability of each year's seasonally averaged temperature 252 

change in the future period is shown in Fig. 4. The data in this figure have been 253 

re-sampled using the method described in Dettinger (2005), which fleshes out the 254 

distributions using a principal component analysis-based resampling technique 255 

applied to the variability around the model-mean climate change signal.  256 

Figure 4 shows a distribution composed of one value per year (2060-69) from 257 

each model, so each model run contributes 10 values. The values are presented 258 

this way to include the effects of interannual natural internal climate variability. 259 
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Over most of the domain, there is a 90% chance of experiencing a warming of at 260 

least 1 C by the 2060s, and a 10% chance the warming will reach 3-4 C 261 

(depending on the season). Although summer (JJA) warming is largest in most of 262 

the domain, across the southern regions the differences between the seasons 263 

lessens, and autumn (Sep-Oct-Nov, SON) warming matches the JJA warming. 264 

3.1.2 Forced versus natural changes in temperature 265 

The distributions in Fig. 4 have contributions from three sources: 1) the average 266 

warming across models; 2) the difference in warming between models; and 3) 267 

natural internal climate variability. We estimate each simulation’s mean warming 268 

as the mean of the 10 yearly values in the future period minus the mean of the 10 269 

values in the historical period. Each simulation’s natural internal climate 270 

variability is estimated from the difference between the 10 individual yearly 271 

values in the future period and the mean of the 10 values in the future period. This 272 

method underestimates the true natural internal variability since the 10-yr average 273 

in the 2060s will itself be influenced by low-frequency natural variability. The 274 

error introduced by this procedure can be estimated from the historical record, as 275 

outlined in the supplemental material (Section 4). Errors are modest, on the order 276 

of 6-14% (Table SM2, column b). The displayed confidence intervals in Figs. 5 277 

and 9 (blue bars) have been widened by these corrections.  278 

Figure 5 shows the average warming, model spread, and estimate of natural 279 

internal climate variability across the 11 climate regions. The annual mean model-280 

estimated warming by the 2060s (Fig. 5a green bars, degrees C) is larger than the 281 

90% confidence interval of natural internal variability (blue bars) in all regions. In 282 

practice, this means that the warming will be easily noticeable in the yearly 283 

average. The red lines show the 90% confidence interval in estimated warming 284 

across the models. The model-to-model variability is small compared to the 285 

magnitude of the projected warming. Even if we knew that one of the models used 286 

here was perfect and the rest wrong, it would make little difference to the 287 

warming estimates.    288 

The seasonal results in Fig. 5 tend to show a larger contribution from natural 289 

variability, which is understandable since fewer days are being averaged over. 290 
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This is most pronounced in winter (DJF, Fig. 5b), where the typical scale of year-291 

to-year natural fluctuations in seasonally-averaged temperature is roughly twice 292 

the expected shift in temperatures. The uncertainly across models (red line) is a 293 

larger fraction of the mean warming as well. These tendencies are minimized in 294 

summer (JJA, Fig. 5d), where the temperature shifts are as large compared to the 295 

natural internal climate variability as seen in the yearly average.  296 

3.1.3 Changes in daily temperature 297 

Only data pooled across the BCCA and dynamical downscaling techniques (which 298 

are based on the GCM’s daily data) have been used for daily analyses of 299 

temperature and precipitation.   300 

Figure 6a shows the cumulative distribution function of daily maximum 301 

temperature in July for the historical period (blue) and future period (red). An 302 

error function transformation is used on the Y axis, so a Gaussian distribution 303 

would form a straight line. All regions show a shift to a higher likelihood of 304 

warmer daily maximum temperatures at all probability levels. The shift is smallest 305 

at the warmest temperatures in the Northern and central coastal regions, perhaps 306 

because of the moderating influence of cool ocean temperatures typically seen in 307 

summer along California's coast. Similar curves for daily July minimum 308 

temperature display more Gaussian behavior (straighter lines) and lack the 309 

reduced warming along the coast (not shown).  310 

By contrast, January daily minimum temperatures (Fig. 6b) show more warming 311 

at the highest percentile values and little change below the median. The 312 

experience on the ground in January will not be an increase in every day's 313 

minimum temperature so much as the appearance of rare days with temperature 314 

several degrees warmer than experienced before. While the slopes of the lines in 315 

Fig. 6a (July) tend to be the same or slightly steeper in the future, indicating 316 

similar or slightly reduced daily variability, the slopes of the lines in Fig. 6b (Jan) 317 

tend to be flatter in the future, indicating greater daily variability in projected 318 

January daily minimum (and maximum, not shown) temperatures.  319 
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Three-day averages of maximum daily temperature in summer (Fig. 7) are of 320 

interest to the energy industry, because people are more likely to use air 321 

conditioning by the third hot day. The shifts seen here are proportionally much 322 

greater than in Fig. 6. Also, in all the inland locations the divergence between the 323 

historical and future distribution becomes more pronounced at the warmest 324 

temperatures. In the San Joaquin valley, a 3-day run of 40 C or warmer 325 

temperatures is only a 1-in-100-yr occurrence in the historical simulations, but is a 326 

1-in-2-yr occurrence in the future simulations. The simulated 3-day average 327 

warmest temperature in the Anza-Borrego region is 46 C in the historical era, but 328 

51 C in the future era.  Increases along the coast are ~2 C, although even there the 329 

incidence of 3-day maximum temperatures with a probability of < 0.01 in the 330 

historical era increases by a factor of 10.  331 

3.2 Precipitation changes 332 

The upper panels of Fig. 8 shows the mean precipitation change (%) by the 2060s, 333 

averaged across all models and downscaling techniques (45 runs total). Lower 334 

panels show climatological fields for comparison. In the annual average (8a), the 335 

overall tendency is for small decreases in precipitation in the southern part of the 336 

state (< 10%), and negligible changes in the North. The patterns by season are 337 

more pronounced, with the northern part of the state experiencing wetter 338 

conditions in winter that are nearly offset by drier conditions in the rest of the 339 

year. The southern part of the state shows moderate fractional decreases in 340 

precipitation in fall, winter and spring but a strong increase in summer 341 

precipitation, which will be discussed more below. Bear in mind that California is 342 

climatologically dry in the summer, so the large percentage increases found at that 343 

time represent small amounts. 344 

3.2.1 Forced versus natural changes in precipitation 345 

Projected changes in seasonal-mean precipitation tend to be small compared to 346 

natural internal climate variability (Fig. 9). The blue bars (90% confidence 347 

interval of natural variability, tenths of mm/day) are generally an order of 348 

magnitude larger than the mean model changes (green bars). At the same time, the 349 

spread across the models (red lines) is typically larger than the mean model 350 
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change, except for the JJA decrease in precipitation across the northern part of the 351 

state (Fig. 9d). However, even precipitation shifts that are small compared to the 352 

inter-seasonal or inter-annual variability can be important for the long term water 353 

balance of a region, especially where the water supply has little room for 354 

reduction. California droughts can last 5-10 years, a long enough averaging period 355 

to reduce natural variability sufficiently to expose small but systematic 356 

precipitation shifts.  357 

3.2.2 The influence of downscaling technique 358 

The effect of downscaling technique on precipitation must be interpreted 359 

cautiously, since not all models were downscaled with all techniques. As a group, 360 

the global models downscaled with a daily technique (either dynamical or BCCA) 361 

happened to be drier than the average global model by about 10 percentage points 362 

in the annual average. In general, the BCCA and dynamical downscaling tend to 363 

make the simulation wetter than the original global model field in all regions, 364 

typically by about 9-14 percentage points. In the monsoon-influenced region in 365 

the southeast of the state this tendency is so strong, the downscaling reverses the 366 

sign of the global model projections. 367 

The difference between downscaling techniques can be isolated by using a single 368 

global model at a time. Figure 10 shows the yearly precipitation change (%) 369 

simulated by the different downscaling techniques applied to the GFDL 2.1 and 370 

CCSM3 global model runs, along with the global fields for comparison. The 371 

downscaling methods all gave similar results for temperature (Fig. 3). However, 372 

for precipitation the agreement depends on the global model. The top row of Fig. 373 

10 shows the different downscaling techniques give similar results when applied 374 

to the GFDL 2.1 global model. However the bottom row of Fig. 10 shows that 375 

different downscaling methods give quite different results for CCSM3 (i.e., Fig. 376 

10g vs. Fig. 10j), with the statistical methods most similar to the global GCM 377 

signal.  378 

The diversity of responses in CCSM3 can be understood, in large part, by 379 

considering the details of precipitation changes in each season. Figures 11a and 380 

11b show the statistical downscaling methods applied to CCSM3, while Figs. 11c 381 
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and 11d show the dynamical methods. Each panel shows the regions in roughly 382 

geographical order, and each region has a set of 4 bars showing the climatological 383 

seasonal precipitation in mm (DJF, MAM, JJA, and SON, counting the bars from 384 

left to right) and the change in precipitation in mm projected by the downscaling 385 

technique (colored portion of the bars). Both dynamical methods show 20-30% 386 

precipitation increases in winter, while the statistical methods show increases of 387 

less than 10%. Both statistical methods show MAM and SON decreases in 388 

precipitation of 20-30%, while the dynamical methods show precipitation 389 

decreases of <10%. In other words, the statistical and dynamical downscaling 390 

technique are showing the same patterns, but with different weighting by season. 391 

Depending on how the oppositely-signed tendencies are weighted, the yearly 392 

average difference can be positive or negative.  393 

What determines the differences between a global model trend and the 394 

corresponding dynamically downscaled trend? This is addressed in Fig. 12, which 395 

shows a selection (DJF and JJA) of seasonally downscaled fields driven by the 396 

GFDL and CCSM3 global models. The values plotted are the differences 397 

(percentage points) between the dynamically downscaled precipitation changes 398 

and the changes found in the original global model. In other words, they are 399 

differences of differences, and show not the future precipitation changes, but 400 

rather how dynamical downscaling alters the original global model trends. In DJF, 401 

the consistencies between the downscaled fields using GFDL (12a, 12e, 12i), and 402 

the consistencies between the downscaled fields using CCSM3 (12c, 12g) are 403 

greater than the consistencies using the same downscaling technique but a 404 

different global model (12a vs. 12c, and 12e vs. 12g). This suggests that in DJF, 405 

the effect of dynamical downscaling is influenced primarily by the global model 406 

characteristics (e.g., the large-scale atmospheric circulation), and is less sensitive 407 

to the dynamical downscaling model used.  408 

In summer, in the southern half of the state, RSM (12f, 12h) tends to show much 409 

wetter changes than the global models (either GFDL or CCSM3), while WRF 410 

(12b, 12d) shows much drier changes than the global models (either GFDL or 411 

CCSM3). The changes produced by RegCM3 lie in between (12j). This indicates 412 

that summer precipitation is influenced more by the particular parameterizations 413 

used by an individual dynamical downscaling model than by the global driving 414 
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model. In the case of RSM, this is despite the fact that spectral nudging is used to 415 

keep the regional model results from diverging too greatly from the original global 416 

model fields. 417 

3.2.3 Changes in daily precipitation 418 

Three-day accumulations of precipitation can be used to understand the potential 419 

for flooding (e.g. Das et al. 2011), as it typically takes a few days for the soil to 420 

saturate during a storm. The distributions of the maximum three-day accumulation 421 

in a calendar year are shown in Fig. 13. Nearly all of California shows striking 422 

increases in maximum three-day accumulations, in many instances generating 423 

values far outside the historical distribution. Similar results were found in Kim 424 

(2005), although that work considered snow/rain distinctions that we are not 425 

examining here. Along the Northern coast, the historical distribution tops out at 80 426 

mm/day with a 0.01/year chance. In the future, that same value has a greater than 427 

0.1/year chance, and the distribution now extends up to 120 mm/day.  428 

For planning purposes it can be useful to know whether the distributions of 429 

temperature and precipitation change are related. For example, perhaps the 430 

warmest projections are also the driest. However, we find no evidence that the 431 

changes in temperature and precipitation distributions are linked in any season. 432 

4. Summary and Conclusions 433 

Our purpose has been to present probabilistic projections of temperature (T) and 434 

precipitation (P) changes in California by the 2060s. We have included daily 435 

distributions, since a number of important applications in energy demand, water 436 

management, and agriculture require daily information. We focused on 437 

probabilistic estimates and included natural internal climate variability, because it 438 

is useful for planners to understand the range of climate projections and how those 439 

compare to natural climate fluctuations.  440 

We downscaled data from 16 global models using a combination of two statistical 441 

techniques (BCSD and BCCA) and three nested regional climate models (WRF, 442 

RCM, and RegCM3), although not all GCMs were downscaled with all 443 
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techniques. In total, we analyzed 9 runs with daily data, plus another 36 with 444 

monthly data. As expected, the statistically downscaled fields tend to be closer to 445 

the original global model simulations than do the dynamically downscaled fields. 446 

All downscaling techniques were combined with equal weighting; exploring the 447 

implications of weighting schemes for different downscaling techniques would be 448 

a useful future extension of this work. We analyzed a historical (1985-1994) and 449 

future (2060-2069) time period, using one emissions scenario, SRES A2. Our 450 

estimates of natural internal variability are computed from the available 10-year 451 

time slices and adjusted upwards (based on an analysis of observations) to correct 452 

for the limited time period included. As appropriate given our focus on 453 

applications, all model output was bias corrected. 454 

We find that January-averaged temperatures as cold as any found in the historical 455 

period are still seen in the 2060s, although rarer. Januarys warmer than any found 456 

in the historical period are seen about 20% of the time. By contrast, cold Julys 457 

(judging by current historical standards) nearly disappear by the 2060s, and the 458 

hottest July average temperature found in any simulation’s historical period 459 

becomes a moderately cool event (15-40th percentile) by the 2060s.The warmest 460 

Julys are likely to be far outside the historical experience; proportionally, the gain 461 

in warm months will be much larger than the loss of cold months. 462 

The downscaled T projections tend to agree across downscaling techniques. Year-463 

to-year variability in seasonally averaged T is about twice as large as the mean 464 

seasonal climate warming in winter, and about half the mean warming in summer. 465 

In either season, the model range in projected warming is about half the mean 466 

warming signal. 467 

Distributions of July daily maximum T shift more or less uniformly towards 468 

warmer values, except along the Northern coast, where maximum values are less 469 

changed from today. In January, the distributions are little changed below the 470 

median, but show a shift towards a greater incidence of a few particularly warm 471 

winter days. Distributions of the warmest 3-day average T, which drive air 472 

conditioner demand, show approximately uniform shifts of +2 C across the 473 

distribution.  474 
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Averaged across all models and downscaling techniques, weak annual mean 475 

decreases in precipitation are found in the southern part of the state, and near zero 476 

P change in the northern part of the state. The disagreement across models is 477 

large, however. Winters tend to become wetter in the north, spring and autumn 478 

show strong decreases in precipitation, and summer (when the actual values of P 479 

are quite small) shows less precipitation in the north but more in the south. 480 

Natural variability is typically more than an order of magnitude greater than these 481 

seasonally-averaged changes, and the range of projections across models includes 482 

zero, except in summer and the southern part of the state in spring.  483 

The different downscaling techniques agree less for annual P changes than they do 484 

for T changes. This is due to the annual P change in most models being made up 485 

of competing effects, with a tendency towards more winter precipitation and less 486 

spring/autumn precipitation. Different models and downscaling techniques weight 487 

these competing seasonal effects differently, which can result in a positive or 488 

negative change in the yearly average. 489 

The dynamical downscaling techniques show larger increases in summer P in the 490 

region affected by the North American monsoon than found with the statistical 491 

downscaling techniques. Regional dynamical models are able to amplify monsoon 492 

effects that are only coarsely represented by the GCM’s, but statistical 493 

downscaling has no way to sharpen these features.  In general, the winter P 494 

response seems more sensitive to which GCM was used, while the summer P 495 

response seems more sensitive to which RCM was used. A similar finding was 496 

reported in Pan et al. (2001). 497 

There is a substantial increase in 3-day maximum precipitation, with peak values 498 

increasing 10-50%, in agreement with Kim (2005). The increases are largest in the 499 

northern part of the state, where values that have only a 0.01 probability of 500 

occurrence in the historical period become 10 times more likely by the 2060s. 501 

Our results have wide application to the needs of resource managers and other 502 

decision makers when adapting to forthcoming climate change in California. In 503 

the realm of water management, the pronounced increase in maximum 3-day 504 

precipitation accumulation has implications for flooding. Likewise, these results 505 
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shed more light on the global model finding that California will generally 506 

experience small changes in annual mean precipitation. We show that these small 507 

annual mean changes are hiding much larger seasonal changes, with wetter 508 

conditions in winter and sharply drier conditions in spring and autumn, although 509 

even these seasonal changes are small compared to the natural variability. 510 

Generally the simulations suggest that the extreme southeast of the state will 511 

experience more summer rainfall as the North American monsoon intensifies, 512 

although not all the different downscaling techniques agree as to the magnitude 513 

and sign of this response. Probabilistic multi-model climate change evaluations 514 

such as those developed here will enable a better understanding of how to adapt to 515 

climate change's effects over California. 516 
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Table 1 657 

GCM Institution BCSD BCCA WRF RSM RegCM3 
BCCR BCM 
2.0 

Bjerknes Centre Clim. Res., 
Bergen, Norway 

1     

CCCMA 
CGCM3.1 

Canadian Centre, 
Victoria, B.C., Canada 

5     

CNRM 
CM3 

Meteo-France, Toulouse, 
France 

1 1    

CSIRO 
MK3.0 

CSIRO Atmos. Res., 
Melbourne, Australia 

1     

GFDL 
CM2.0 

Geophys. Fluid Dyn. Lab, 
Princeton, NJ, USA 

1     

GFDL 
CM2.1 

Geophys. Fluid Dyn. Lab, 
Princeton, NJ, USA 

1 1 1 1 1 

GISS e_r NASA/Goddard Inst. Space 
Studies, N.Y., USA 

1     

INMCM 3.0 Inst. Num. Mathematics, 
Moscow, Russia 

1     

IPSL CM4 Inst. Pierre Simon Laplace, 
Paris, France 

1     

MIROC 3.2 
medres 

Center Climate Sys. Res., 
Tokyo, Japan 

3     

MIUB 
ECHO-G 

Meteor. Inst. U. Bonn, Bonn, 
Germany 

3     

MPI-
ECHAM5 

Max Planck Inst. Meteor., 
Hamburg, Germany 

3     

MRI 
CGCM2.3.2 

Meteor. Res. Inst., Tsukuba, 
Ibaraki, Japan 

5     

NCAR 
CCSM3 

Nat. Center Atmos. Res., 
Boulder, CO, USA 

4 1 1 1  

NCAR 
PCM1 

Nat. Center Atmos. Res., 
Boulder, CO, USA 

4 1    

UKMO 
HadCM3 

UK Met Office, Exeter, 
Devon, UK 

1     

 658 

Table 1. The global general circulation models (GCMs) used in this project, their 659 

originating institution, and the number of ensemble members downscaled by the 660 

indicated method. BCSD: bias correction with spatial disaggregation; BCCA: bias 661 

correction with constructed analogues; WRF: weather research forecast model; 662 

RSM: regional spectral model; RegCM3: Regional climate model version 3.  663 
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 664 

Figure 1. Upper: temperature change (°C) from years 1985-94 to 2060-69. The seasonally-665 
averaged data from all models and downscaling techniques was averaged across models to 666 
generate the values. The regions used in this work are also shown. Lower: temperature climatology 667 
(°C) averaged across the models, and observed annual mean for comparison (lower right). 668 
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 669 

Figure 2. Correspondence between percentiles of monthly-averaged temperature in the historical 670 
period (x axis) and future period (y axis), for January (left) and July (right). For instance, the blue 671 
cross in panel a for the Sacramento/Central valley shows that the 50th percentile temperature in the 672 
historical period  will become the 17th percentile value in the 2060s. The grey line shows what the 673 
result would be if there were no changes in the distributions. The regions are plotted in roughly 674 
geographic order (Northwest locations in the top left, etc.). The figure is made with monthly data 675 
from all 45 model runs. 676 
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 677 

Figure 3. Yearly temperature change (C) (2060-2069 minus 1985-1994) from each downscaling 678 
technique applied to the GFDL 2.1 global model (upper) and CCSM3 global model (lower). The 679 
yearly temperature changes from the global models are shown in panels f and k, for comparison.   680 
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 681 

Figure 4. Probability of a temperature change of the indicated value or greater, by region and 682 
season. The regions are plotted in roughly geographic order (Northwest locations in the top left, 683 
etc.). Monthly data from all 45 runs is used to make the figure. 684 
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 685 

Figure 5. A comparison of the contribution of natural internal climate variability and model 686 
uncertainty to yearly and seasonally averaged projected temperature changes by the 2060s. Blue 687 
bars show the 90% confidence interval of natural internal climate variability in near surface air 688 
temperature (C) estimated across all models. Green bars show the mean model warming projected 689 
in the period 2060-69. The red line shows the 90% confidence interval in the projected warming 690 
across models. Note that each inset plot has a different scale for the Y axis, in degrees C. Monthly 691 
data from all 45 runs is used to make the figure. 692 
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 693 

Figure 6. Cumulative distribution functions of July daily maximum temperature (left) and Januray 694 
daily minimum temperature (right) across the regions (plotted roughly geographically). The Y axis 695 
shows the probability (zero to one) of experiencing the indicated temperature or lower on any 696 
particular day. Results from the historical run are in blue; the future run is in red. Large solid dots 697 
show where the two curves are different at the 95% significance level, evaluated using a bootstrap 698 
technique. Open circles indicate statistically indistinguishable values. Data from the 9 runs with 699 
daily data was used to make the figure. 700 
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 701 

Figure 7. Cumulative distribution functions of the highest 3-day average temperature in the year. 702 
The Y axis shows the probability (zero to one) of having the warmest 3 days in a year be the 703 
indicated temperature or lower. Results from the historical run are in blue; the future run is in red. 704 
Panels are plotted roughly geographically. Large solid dots show where the two curves are 705 
different at the 95% significance level evaluated using a bootstrap technique. Data from the 9 runs 706 
with daily data was used to make the figure. 707 
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 708 

Figure 8. Upper panels: Precipitation change (%), mean over the period 2060-69 compared to 709 
mean over the period 1985-94. Data from all models and downscaling techniques was averaged to 710 
generate the values. Lower panels: model climatological precipitation (tenths of mm/day), and 711 
annual average from observations for comparison (lower right). 712 
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 713 

Figure 9. A comparison of the contribution of natural internal climate variability and model 714 
uncertainty to yearly and seasonally averaged precipitation changes. Blue bars show the 90% 715 
confidence interval of natural internal climate variability in seasonally averaged precipitation 716 
(tenths of mm/day) estimated across all models, for the period 2060-69. Green bars show the mean 717 
model precipitation change projected in the period 2060-69. The red line shows the 90% 718 
confidence interval in the projected precipitation change across models. Note that each inset plot 719 
has a different scale for the Y axis. Monthly data from all 45 runs is used to make the figure. 720 
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 721 

Figure 10. Yearly precipitation change (%, 2060-2069 compared to 1985-1994) from each 722 
downscaling technique applied to the GFDL 2.1 (top row) and CCSM3 (bottom row) global 723 
models. The yearly precipitation changes from the global models are shown in panels f and k, for 724 
comparison. Since the effect of downscaling on the global model fields is being illustrated, only 725 
one BCSD ensemble member is shown, the one corresponding to the illustrated global model and 726 
used for the dynamical downscaling. 727 
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 728 

Figure 11. Changes in precipitation for the different downscaling methods applied to the CCSM3 729 
global model. In each panel a-d, the subpanels show the precipitation changes by region, arranged 730 
roughly geographically. The bars show each region's seasonal precipitation (mm) in DJF, MAM, 731 
JJA, and SON (left to right) in the future and historical periods. The difference between the future 732 
and historical precipitation is colored, with the color determined by the percentage change using 733 
the same scale as Fig. 10 (yellows/oranges show less precipitation, blue/green show more 734 
precipitation). Note that every set of bars has a different Y axis, in mm. 735 
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 736 

Figure 12. Difference (percentage points) between the change in seasonal precipitation projected 737 
by the dynamically downscaled simulations and the change found in the original global model 738 
(GFDL 2.1 or CCSM3, as labeled). Only winter (DJF) and summer (JJA) fields are shown. 739 
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 740 

Figure 13. Cumulative distribution functions (CDFs) of the maximum 3-day mean precipitation in 741 
a calendar year. Regions are plotted roughly geographically. Y axis is probability (0-1) of 742 
experiencing the indicated average 3-day precipitation rate (mm/day), or lower. Large solid dots 743 
show where the two curves are different at the 95% significance level, evaluated using a bootstrap 744 
technique. Open circles indicate statistically indistinguishable values. Data from the 9 runs with 745 
daily data was used to make the figure. 746 
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Supplemental Material for 747 

Probabilistic estimates of future changes in 748 

California temperature and precipitation using 749 

statistical and dynamical downscaling 750 

David W. Pierce1,*, Tapash Das1,6, Daniel R. Cayan1, Edwin P. Maurer2, Norman 751 

Miller3, Yan Bao3, M. Kanamitsu1, Kei Yoshimura1, Mark A. Snyder4, Lisa C. 752 

Sloan4, Guido Franco5, Mary Tyree1 753 

1. Descriptions of the Regional Climate Models (RCM s) 754 

1.1 Regional Climate Model version 3 (RegCM3) 755 

RegCM3 is a third-generation regional-scale climate model derived from the 756 

National Center for Atmospheric Research-Pennsylvania State (NCAR-PSU) 757 

MM5 mesoscale model (Pal et al. 2007). RegCM3 has the same dynamical core as 758 

MM5, the CCM3 radiative transfer package, and the Biosphere-Atmosphere 759 

Transfer Scheme (BATS) land surface model (Dickinson et al., 1986; Giorgi et al., 760 

2003). RegCM has been validated against observations of modern-day climate in 761 

multiple domains, and does well in simulating the spatial and temporal climate 762 

features of California (Snyder et al. 2002, Bell et al. 2004).  For this study 763 

RegCM3 was configured with the Holtslag boundary layer scheme (Holtslag et 764 

al., 1990), Grell cumulus scheme (Grell, 1993) with the Fritsch and Chappell 765 

closure scheme (Fritsch and Chappell, 1980), and the Zeng (1998) ocean flux 766 

parameterization.  The model domain is centered over California with a horizontal 767 

resolution of 10 km and 18 levels in the vertical. 768 

1.2 Weather Research and Forecasting model (WRF) 769 

We use a version of NCAR WRF version 3 coupled to the community land 770 

surface model version 3.5 (CLM3.5; Oleson et al. 2004), referred to as “WRF-771 

CLM3” in Miller et al. (2009). The combination has an advanced land surface 772 

scheme with sub-grid representation for snow and vegetation, lateral hydrologic 773 
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flow capability, and the potential for time-evolving plant functional types. The 774 

WRF model is set up with 10 km horizontal resolution, and uses the Kain-Fritsch 775 

convection parameterization for cumulus clouds (Kain and Fritsch 1993), the 776 

Yonsei University (YSU) planetary boundary layer (PBL) scheme (Hong and Pan 777 

1996), and the Medium Range Forecast Model turbulence closure scheme (Mellor 778 

and Yamada 1982). The microphysics package used here is the WRF Single-779 

Moment 3-class (WSM3) scheme (Hong et al. 2004), and the Rapid Radiative 780 

Transfer Model (RRTM) based on Mlawer et al. (1997) is used for describing 781 

longwave radiation transfer within the atmosphere and to the surface, and the 782 

shortwave scheme developed by Dudhia (1989). Dynamical downscaling using 783 

WRF has been evaluated over the state of California (Caldwell et al. 2009), and 784 

WRF coupled to CLM3.5 has been used to show that changes in vegetation can 785 

have appreciable effects on local climate (Subin et al. 2011). 786 

1.3 Regional Spectral Model (RSM) 787 

The version of the regional spectral model (RSM) used here is a development of 788 

the National Centers for Environmental Prediction (NCEP) global spectral model 789 

(GSM). The original regional code has been modified to have greater flexibility 790 

and increased efficiency (Kanamitsu et al., 2005). The RSM uses a two-791 

dimensional spectral decomposition, and is implemented with so-called “spectral 792 

nudging”, i.e., relaxation towards the low-frequency components of the global 793 

simulation over the regional domain (Kanamaru and Kanamitsu 2007). The 794 

configuration used here is similar to that used to generate the 10-km California 795 

Reanalysis Downscaling (CaRD10) data set (Kanamitsu and Kanamuru, 2007). A 796 

scale-selective bias correction (SSBC) was used during these runs (Kanamaru and 797 

Kanamitsu 2007). The Noah land surface model with four soil layers was used, 798 

and cloud water and cloudiness are implemented as prognostic variables (Tiedtke 799 

1993; Iacobellis and Sommerville 2000).  800 

2. Statistical downscaling methods 801 

We use two different statistical downscaling techniques. Both operate on bias-802 

corrected GCM data; the bias correction (BC) procedure is described in section 803 
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2.3. The BCCA technique downscales daily global model data, while the BCSD 804 

technique downscales monthly global model data. 805 

2.1 Bias Correction with Spatial Disaggregation (BCSD) 806 

BCSD (Wood et al. 2002, 2004) generates daily, fine-resolution (1/8o x 1/8o in this 807 

implementation) fields from monthly, bias-corrected GCM data by expressing 808 

these coarse (GCM-scale) monthly values of average temperature and 809 

precipitation as anomalies relative to a historical climatology. The monthly GCM 810 

anomalies are interpolated onto the fine-scale grid, then applied, by offsetting (for 811 

temperature) or scaling (for precipitation), to the long term mean at the fine scale. 812 

This produces a fine scale monthly downscaled value. To generate daily 813 

variability within each month an analogue month from the historical observations 814 

is selected, with the selected month being the same month of the year as the data 815 

being downscaled. The daily observed data for the analogue month on the fine-816 

scale grid is then offset (for temperature) or scaled (for precipitation) so that each 817 

grid cell's monthly mean matches the monthly downscaled value. Since analogue 818 

months from the historical period are used to generate the daily sequences, we do 819 

not analyze BCSD-generated distributions of daily future climate variables. BCSD 820 

downscaling is used, for example, by Hayhoe et al. (2004), Maurer (2007), and 821 

Vicuna et al. (2007).  822 

2.2 Bias Correction with Constructed Analogues (BCCA) 823 

BCCA uses bias correction along with downscaling of daily GCM fields via 824 

constructed analogues (Hidalgo et al., 2008; Maurer et al. 2010). BCCA is 825 

therefore the CANA method described by Miller et al. (2009) along with a BC 826 

step applied to the GCM temperature and precipitation fields. The constructed 827 

analogue technique starts with a library of daily historical observations on a 1/8o x 828 

1/8o grid. This fine scale data is coarsened to the GCM grid, and the 30 best 829 

matches (analogues) between the GCM fields for that day (including in the library 830 

observed days within a ± 45 day window of the target date) and the coarsened 831 

observations are computed. The 30 analogues are combined, using the strength of 832 

their correspondence to the GCM grid as weights, into a GCM-sclae constructed 833 
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analogue. The same linear combination is then applied to the fine scale observed 834 

data to obtain the final downscaled data for a day. 835 

3. Bias correction procedure 836 

The output of the GCMs was bias corrected to observations (Maurer et al. 2002) 837 

before statistical downscaling, while the output of the dynamical RCMs was bias 838 

corrected after being generated. In general, before bias correction the RCMs tend 839 

to display 10-20% drier than observed conditions in the Northern part of the state 840 

in winter, 20-50% too wet conditions in the inland desert regions in winter, 10-841 

20% wetter conditions than observed in the Northern part of the state in spring, 842 

and an overall warm bias of 0.1-2.0 C throughout the year.  843 

BCSD starts with monthly GCM data, which we bias correct using the quantile-844 

mapping technique (Panofsky and Brier, 1968), described in Maurer (2007), based 845 

on Wood et al. (2002, 2004). The mapping parameters are determined for each 846 

month by comparing the model results to the observations over the 847 

model/observations overlap period 1950-1999, and then are applied to the future 848 

period. The assumption is that the biases are unchanged in the future (cf. Liang et 849 

al. 2008). For bias correcting GCM output, Wood et al. (2004) suggest as long a 850 

historical period as possible be used to characterize monthly GCM biases, with 851 

ranges for robust error correction from 20-50 years (or longer). For temperature, 852 

the linear trend from the GCM output (interpolated to the fine scale grid) was 853 

removed at each point before the BC procedure was applied, and then added back 854 

in afterwards. The reason for this is explained by Wood et al. (2004): as 855 

temperatures rise in the future they are found more frequently outside the historic 856 

range, requiring excessive extrapolation during the quantile mapping. 857 

Precipitation, with typically much greater interannual variability than temperature, 858 

does not generally experience trends that exhibit this problem during remapping, 859 

so the trend removal and replacement was not applied.  In theory, this procedure 860 

has the advantage that the final result preserves the original trend in the global 861 

model, but the disadvantage that the resulting trend is essentially that of the 862 

interpolated global model. In practice, the application of bias correction can still 863 

modify the original global model trends for reasons explained below. 864 
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The BCCA and RCM data are daily. We bias correct the daily data using a similar 865 

quantile mapping technique, described in Maurer et al. (2010). The historical 866 

period used for the monthly BCCA downscaling was the 50-yr span 1950-1999, 867 

but only the 10-yr period 1984-1995 is available for the RCM data. When bias 868 

correcting daily (instead of monthly) data, 10 years is adequate, as 10 years of 869 

daily information (~3652 time steps) provides considerably more samples than 50 870 

years of monthly information (600 time steps) (Maurer et al., manuscript in 871 

preparation; see also Chen et al. 2011).  872 

In contrast to BCSD, the global trend was not removed and then reapplied for the 873 

BCCA and RCM data, since the motivation for trend removal and replacement 874 

described above is not as strong for daily data. For example, since a large portion 875 

of the trend in daily temperatures is due to more frequent warm temperatures (as 876 

opposed to relatively few record hot temperatures) (Dettinger et al. 2004), which 877 

are represented in the historic period, the trend removal and replacement 878 

procedure is less necessary. This also means that the trend in these data sets is free 879 

to differ from the GCM trend. Since the basic assumption of downscaling is that it 880 

adds regionalized information to the global signal, this is a desirable 881 

characteristic.  882 

However, the bias correction itself can modify the global trend (Hagemann et al. 883 

2011). Table SM1 illustrates this for July average daily temperature at one grid 884 

point. Bias correction modifies the variance of the GCM output, since GCM 885 

simulations inevitably contain biases in variance, skew, and higher moments. The 886 

historical mapping is applied to future projections, so this process changes the 887 

statistical properties of the GCM projections. This table shows that when bias 888 

correction increases the standard deviation of the monthly data, then the low-889 

frequency trend increases as well; when BC decreases the standard deviation, the 890 

trend decreases. In essence, the procedure assumes that errors in the amplitude of 891 

variability apply equally on all timescales, from daily to the secular trend. 892 

Whether the trend modification is appropriate given GCM errors in simulating 893 

variability or if the raw simulated trend should be preserved through the 894 

downscaling procedure is an open question. 895 
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4. Errors in the estimation of natural internal cli mate variability 896 

The procedure described in the main text section 3.1.2 underestimates the value of 897 

natural internal climate variability since it is based the spread around the 10-yr 898 

average during the 2060’s, but the 10-yr average itself will be affected by low-899 

frequency natural internal climate variability. The size of this effect can be 900 

estimated from the historical record, assuming that future changes in the spectral 901 

structure of natural variability will be modest.  902 

Using the technique described in Appendix A of Barnett & Pierce (2008) 903 

(transforming an observed time series to frequency space, randomizing the phases, 904 

and transforming back while taking sampling uncertainty in the estimate of the 905 

spectral amplitudes into account), we constructed 200 random time series for each 906 

variable (T, P) and each California region. Observed time series were computed 907 

from Hamlet and Lettenmaier (2005). Each random time series, by construction, 908 

has a mean and spectrum that is indistinguishable from observations (within 909 

sampling uncertainty). We then used the 200 random time series to calculate the 910 

natural variability as done in section 3.1.2 (in a 10-yr chunk) and compared it to 911 

the variability directly calculated from the full time series.  912 

For temperature, the true 90% confidence interval was 6-20% wider than 913 

calculated as in the manuscript; for precipitation, the true 90% C.I. was 5-25% 914 

wider (Table SM2). This overstates the error in for temperature, since all 915 

California regions show a strong warming over the observed time period that has 916 

been shown to be anthropogenic in origin (e.g., Bonfils et al., 2008). Using a 917 

simple linear detrending for temperature and recomputing, the true C.I. for 918 

temperature was 6-14% wider than indicated by the method used in the 919 

manuscript. Figures 5 and 9 in the main text have been corrected to show this 920 

wider range for natural internal variability (the blue bars). 921 
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Table SM1 1006 

Statistic NCAR 

CCSM3 

CNRM 

CM3 

NCAR 

PCM1 

GFDL 

CM2.1 

�  pre bias correction 0.84 0.66 0.49 0.73 

�  post bias correction 0.67 0.85 0.50 0.60 

DDDDT pre bias correction 2.7 1.7 1.3 2.3 

DDDDT post bias 

correction 
2.2 2.3 1.3 1.9 

 1007 

Table SM1. An example of the effect of bias correction on the standard deviation 1008 

(� ) of average daily July temperature (for a future period of 2040-2069) on the 1009 

projected changes in temperature (DT) between the future period and a historic 1010 

baseline of 1950-1999 for a single grid point located at latitude 39, longitude -121, 1011 

over northern California. 1012 
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Table SM2 1013 

 Region a) T error  b) T error 
(detrended) 

c) P error 

S. California coast 20% 13% 9% 

Anza-Borrego 8% 6% 25% 

San Joaquin 
valley 

14% 8% 9% 

Sierra Nevada 7% 7% 5% 

Northeast 
California 

6% 8% 9% 

N. California 
coast 

18% 14% 6% 

Central N. 
California 

10% 10% 5% 

Central coast 19% 8% 6% 

S. California 
Mtns. 

11% 9% 10% 

Inland Empire 12% 7% 13% 

Sac/Central 
Valley 

19% 6% 9% 

 1014 

Table SM2. Estimated error in the 90% confidence interval of natural internal 1015 

climate variability obtained when taking the average with respect to a 10-year 1016 

period rather than using the entire period of record. Values are based on 1017 

observations over the period 1915-2004. Column a) temperature; b) temperature, 1018 

but detrending the temperature record first to remove anthropogenic warming; c) 1019 

precipitation. See supplemental material text (section 4) for details. 1020 

 1021 


