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ABSTRACT

Sixteen global general circulation models were usatkvelop probabilistic projections of
temperature (T) and precipitation (P) changes @adifornia by the 2060s. The global models
were downscaled with two statistical techniques thnele nested dynamical regional climate
models, although not all global models were dowiestwith all techniques. Both monthly and
daily timescale changes in T and P are addredsedgatter being important for a range of
applications in energy use, water management, gnicudture. The T changes tend to agree more
across downscaling techniques than the P changes-t¥-year natural internal climate variability
is roughly of similar magnitude to the projectedfianges. In the monthly average, July
temperatures shift enough that that the hottegtféduind in any simulation over the historical
period becomes a modestly cool July in the futenéoal. Januarys as cold as any found in the
historical period are still found in the 2060s, thé median and maximum monthly average
temperatures increase notably. Annual and seafodladnges are small compared to interannual
or intermodel variability. However, the annual charis composed of seasonally varying changes
that are themselves much larger, but tend to candke annual mean. Winters show modestly
wetter conditions in the North of the state, wisiiging and autumn show less precipitation. The
dynamical downscaling techniques project increapmgipitation in the Southeastern part of the
state, which is influenced by the North Americamismon, a feature that is not captured by the

statistical downscaling.
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1. Introduction

California has a confluence of factors that makmiticularly vulnerable to
anthropogenically-induced climate change (e.g.,lHgayet al. 2004, Cayan et al.
2006). Warming and precipitation changes will diregnpact crops and pests in
the agricultural and wine-producing regions, arfd@fregional water resources
and flood risk through changes in the snow linewgrack, and
evapotranspiration. Indeed, anthropogenic effeatsatready be seen in the
temperature and hydrology of the western U.S. (Bt al. 2008, Pierce et al.
2008, Bonfils et al. 2008, Hidalgo et al. 2009, [@asl. 2009; cf. Maurer et al.
2007, who examined a smaller region).

The primary purpose of this work is to present @cpns of temperature (T) and
precipitation (P) change over California by the @961 a probabilistic framework
(e.g. Manning et al. 2009; Chen et al. 2011), wiiédilitates risk-based planning
and provides a framework for adaptive resource g@amant (e.g., Anderson et
al. 2008, Brekke et al. 2009). Global climate med€&CMs; Meehl et al. 2007)
do not uniformly sample model uncertainties, aredreot independent (Pennell
and Reichler, 2011). Therefore the distributionsvai here are not true estimates
of the probability of future climate changes, rathee best-guess estimates of
future climate change given current simulations. d&epare our projections of T
and P changes to natural internal climate varigb#io that the relative magnitude

of the two can be assessed.

Spatial downscaling is necessary in California,chihs topographically complex.
We use daily results from two GCMs dynamically deaaled with three different
regional climate models; the same two global mogdkls two more statistically
downscaled on a daily timescale; and the same 4ln@ils 12 more (some with
multiple ensemble members) statistically downscaled different technique on a
monthly timescale. In total, we incorporate datarfr45 runs originally generated
by 16 different global models. The secondary puepafghis work is to compare
the climate projections from the dynamical andistiaal downscaling techniques

and address how they systematically differ. Natumarnal climate variability is
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included to the extent that the original GCMs siatelit (cf. AchutaRao and
Sperber, 2006).

Climate change over California has been extenssteigied using some
combination of single or multiple GCMs and stagtigtior dynamical downscaling
(e.g., Dickinson et al. 1989; Giorgi et al. 1994nkret al. 2001; Kim 2001 and
2005; Snyder et al. 2002; Hayhoe et al., 2004; beatral. 2004; Brekke et al.
2004; Maurer and Duffy 2005; Snyder and Sloan 2@08fy et al. 2006; Maurer
2007; Liang et al. 2008; Caldwell et al. 2009; Céiral. 2010). Some common
themes emerge from these efforts. First, diffe@@GMs produce different
warming and precipitation changes. Second, regiditaate models (RCMs)
introduce another source of variation, even withgame driving GCM. Third,
temperature changes over California are consistpo8itive, but precipitation
changes vary in sign. Fourth, even with the divetgeecipitation projections, the
effect on California’s hydrology is substantialpgrpack declines and runoff
shifts to earlier in the water year, with elevataependent effects due to the
colder temperatures at higher elevations. And,fdthmodel simulations exhibit

biases, which are assumed to systematically atfiegprojected climate as well.

Given this body of previous work, it is perhapspsising that major gaps remain.
Few of the studies approached the problem prolséibdily, and only Leung et al.
2004, Hayhoe et al. 2004, and Kim 2005 analyzduthee daily data, which is
critical to energy use, agriculture, ecology, flowj and water management.
Finally, none of the studies used both statisteal dynamical downscaling and
compared the two (cf. Hay and Clark 2003, who us#t, but over the historical
period only and examined runoff rather than T apdSknilar issues have been
addressed in other regions; for example, EuropeaiPRUDENCE (Christensen
et al., 2007) and ENSEMBLES (Kjellstrom and Gio2f)10) projects, and the
UK with the Climate Projections project
(http://ukclimateprojections.defra.gov.uk/).

Pierce et al. (2009) examined 40-year periods theewestern U.S., and found
that 14 runs developed from 5 global models reji@binveyed the information
from the full set of 21 CMIP-3 model results. Thékoof results shown here are

generated using monthly data from all 45 runs (tge=l from 16 global models),

4
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so should be reliable even though the spatial mmel $cales considered here are
somewhat smaller than used in Pierce et al. (2@0&fornia vs. the western
U.S., 10-yr vs. 40-yr periods) and natural intenedability becomes more
evident at smaller scales (e.g., Hawkins and S&@di®). However the analysis
shown here was also done with a subset of 25 exwuding multiple ensemble
members for any single model) and the results Vitdeedifferent, which suggests

that our sampling of available climate model endemtiembers is adequate.

Some of our results are from the 9 daily runs dgwed from 4 global models,
which falls short of the ideal number of runs afabgl models to use. However
Pierce et al. (2009) demonstrates that the largerityaof the increase in multi-
model ensemble averaged skill occurs when going ftdo 4 global models. We
therefore believe that the daily results shown haeéained from the 9 runs
(incorporating information from 4 global modelshe doth a credible first analysis
of the problem and a roadmap showing how the nnuttitel probabilistic
treatment could be extended with additional runthenfuture.

2. Data and Methods

We used dynamical downscaling with 3 regional ctemaodels (RCMs): the
Regional Climate Model version 3 (RegCM3), whichieived from NCAR’s
MM5 mesoscale model (Pal et al. 2007); the NCAR/REESL Weather
Research and Forecasting (WRF) model (Skamaroak, &@008); and the
Regional Spectral Model (RSM, Kanamitsu et al.,30®hich is a regional
version of the National Centers for Environmentadiction (NCEP) global
spectral model. Details of the RCMs are given s Supplemental Material,
section 1. Miller et al. (2009) examined the apitf the RCMs used here to
simulate California’s historical climate when dniveith boundary conditions
from the NCEP reanalysis Il (Kanamitsu et al. 20@2d compared their
climatology to observations. That work concludeat thil the models have
limitations, particularly in parameterized processh as cloud formation, but that
“they perform as well as other state-of-the-art degaling systems, and all do a
credible job simulating the historical climate ddlfornia” (see also the

supplementary information).
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We used two methods of statistical downscalingsEarrection with
Constructed Analogues (BCCA,; Hidalgo et al., 20@&urer et al. 2010), and
Bias Correction with Spatial Disaggregation (BCSpod et al. 2002, 2004)
These methods were compared in Maurer and Hid2g@8), who concluded that
they have comparable skill when downscaling montfilelgs of temperature and
precipitation. However only BCCA preserves theylagquence of original global
model variability, which is of interest here. Détaof the statistical techniques are
given in the Supplemental Material, section 2. Softie BCSD ensemble
members were downloaded from the Bias CorrectedDanehscaled WCRP
CMIP3 Climate Projections archive at http://gdo-
dcp.uclinl.org/downscaled_cmip3_projections (Mawtal., 2007).

All downscaling is to an approximately a 28 1/&° (~ 12 km) spatial resolution.
Table 1 lists the various models and number ofrebg= members used for each
downscaling technique. Not all GCMs were downscaléd all techniques,
because of the computer time required and laclaity data for all the GCMs.
Only limited time periods were covered: 1985-94 (thistorical period”) and
2060-2069 (the “future period”). Also, only the SRE2 emissions scenario is
used. We note that the 2060s is about the lastdeghere globally averaged
surface temperatures from the A2, B1, and A1B a@omssscenarios do not show
a clear separation (IPCC 2007). For the dynamiedlECCA downscaling,
CMIP-3 ensemble number 1 was used when more thaemsemble member was

available.

The 10-year spans are too short to examine natlimahte variability from El
Nino/Southern Oscillation (ENSO) and the Pacific®dal Oscillation (PDO) in
any one model run. However, we partially make uglics by using 4 to 16
models at a time (depending on the downscalingiigale). Natural internal
climate variability due to ENSO and the PDO is sytchronized across model
runs due to the chaotic nature of the atmosphergfioBexample, one model run
might be simulating positive ENSO conditions in rabgear 2065 while another
model run might be simulating negative ENSO coodsi Although both ENSO
and the PDO affect California temperature and pr&tion, averaging across
unsynchronized runs randomly samples different ghas$ these phenomena,
which reduces the net effect of they have on otimases of anthropogenic
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climate change by the 2060’s. We do not discarddlestimates of natural
variability; rather we compare our estimates ohaspogenic climate change to
the magnitude of this natural variability so thdtedter understanding of the
relative magnitude of each can be obtained.

Results are presented as averages over the 1b@alitlimate regions identified
by Abatzoglou et al. (2009). These regions do tebg@ib representing
California's diverse mix of climate regimes thaa sitandard U.S. climate

divisions.

2.1 Bias correction

All T and P fields, whether downscaled statisticalt dynamically, underwent a
bias correction procedure (Panofsky and Brier 1968 rer et al. 2002; Wood et
al. 2002, 2004; Maurer 2007; Maurer et al. 201@)sTs necessary because the
project’s focus was on hydrological and other aggtions, and even current state-
of-the-art GCMs/RCMs generate T and P fields wittses, often due to biases in
the original global fields (e.g., Wood et al. 2004iffy et al. 2006, Liang et al.
2008). Details of the bias correction proceduregiwen in the Supplemental

Material, section 3.

3. Results

The probabilistic framework requires that severablei runs be included to
provide a distribution of projected outcomes. lis thork we weight all
combinations of global model and downscaling teghaiequally (except for the
multiple ensemble members available from a sintgibaj model using BCSD, as
described below), following the approach used al#st IPCC assessment (IPCC,
2007). Pierce et al. (2009) looked specificallyhat western U.S. and concluded
that weighting by model quality does not make &d#nce to climate projections

until after the time period considered here (theQ&).

BCSD was the only downscaling technique that haltfipteidownscaled
ensemble members available from the same globaéhfdeble 1). When

analyzing mean quantities, we combined multiple B@&®wnscaled results from
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the same global model into a single model meanrbefoalysis, so that each
global model contributes equally to the BCSD redekpite the disparate number
of ensemble members. When computing variability sness this averaging is not
appropriate, since averaging reduces the rangarathility. In these cases we
used a Monte-Carlo approach, constructing 1000aiangets of BCSD results
where each model contributed one randomly pickegm®ible member. Results
shown here are the average obtained across therd@@0m trials. In practice
however this makes little difference, as the BC88ults are well sampled even

excluding the extra ensemble members.

3.1 Temperature changes

Figure 1 (upper) shows the temperature changelseb060s, averaged across all
models and downscaling techniques. The yearly-geeravarming is on the order
of 2.4 C. The coastal regions experience less wayhue to the ocean’s
moderating influence, with a typical value of ab&w C. Inland locations show
warming approaching 2.6 C, which may have the piateto suppress coastal
warming further via enhanced sea breezes in sooa¢idms (Snyder et al. 2003;
Lebassi et al. 2009). The lower panels of Fig.dwshlimatological fields for

reference.

The mean warming has a pronounced seasonal signatitin the most warming
(=3 C) in the summer (June-July-August), and thstlevarming (< 2 C) in the
winter (Dec-Jan-Feb). Since energy use in Calitoreidominated by summer
cooling loads rather than winter heating loads tarming pattern suggests that
peak energy use could increase faster than wouskpected if only the yearly

averaged temperature changes were taken into a@ccoun

Figure 2 shows the change in individual monthlyréhsitions of temperature,
displayed as a mapping between historic and fysareentiles. For example, the
blue cross in panel a for the Sacramento/Centttdwshows that the 50
percentile temperature in the historical periogxis) will become the 7
percentile value in the 2060s (y axis). The cuimdsig. 2a start at the origin,
which means that the coldest January monthly aegigperatures in the
historical period will still be experienced in tA860s. Relative to the evolving

8
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mean, the coldest months become much more dramdhe future, which might
have implications for moving to crops better addptehotter conditions. Of the
45 runs (Table 1), 16 have at least one Januahei2060s that is about as cold,
or colder, than the coldest historical Januarjheagame model. Despite this, Fig.
2a shows that the median monthly January temperatuhe future will be
warmer than 8 or 9 out of 10 Januarys today, aeadvdrmest Januarys in the

future are completely off the historical distrilmurti

In July (Fig. 2b), the curves still start nearlytta¢ origin, but inspection showed
that such a cold July only existed in two of therds. On the other hand, the
difference in the warmest months is profound. Quest of the state, the warmest
monthly average July found in the entire histordiatribution of any model is
only a 15-40th percentile event in the future pebrice., a July that is record-
breaking hot by current historical standards wéltbme modestly cool in

comparison to the new mean.

The yearly warming simulated by the various dowhisgaechniques is shown in
Fig. 3. Results are illustrated for the GFDL 2.1 &CSM3 global models. Global
model results are displayed in Fig. 3f and 3k famparison. The downscaling
techniques generate similar values, and capturddbease in warming near the
coast that is poorly resolved in the global fi@€CA produces a somewhat
weaker trend than the other methods for GFDL, algihanot for CCSMS3 (cf.
Maurer and Hidalgo (2008), their Fig. 5).

3.1.1 Distributions of seasonal temperature change

The exceedence probability of each year's seagyanadraged temperature
change in the future period is shown in Fig. 4. @h& in this figure have been
re-sampled using the method described in Detti{R#05), which fleshes out the
distributions using a principal component analymsed resampling technique

applied to the variability around the model-meamate change signal.

Figure 4 shows a distribution composed of one vpkreyear (2060-69) from
each model, so each model run contributes 10 valilesvalues are presented
this way to include the effects of interannual naltinternal climate variability.
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Over most of the domain, there is a 90% chancepérencing a warming of at
least 1 C by the 2060s, and a 10% chance the wgnwilhreach 3-4 C
(depending on the season). Although summer (JJA) g is largest in most of
the domain, across the southern regions the dift@®between the seasons

lessens, and autumn (Sep-Oct-Nov, SON) warmingheatthe JJA warming.

3.1.2 Forced versus natural changes in temperature

The distributions in Fig. 4 have contributions frémee sources: 1) the average
warming across models; 2) the difference in warnfietyveen models; and 3)
natural internal climate variability. We estimatehk simulation’s mean warming
as the mean of the 10 yearly values in the futereod minus the mean of the 10
values in the historical period. Each simulatiamegural internal climate
variability is estimated from the difference betwdbe 10 individual yearly
values in the future period and the mean of thedlOes in the future period. This
method underestimates the true natural interna@bgity since the 10-yr average
in the 2060s will itself be influenced by low-frezncy natural variability. The
error introduced by this procedure can be estimfntad the historical record, as
outlined in the supplemental material (Sectiontjors are modest, on the order
of 6-14% (Table SM2, column b). The displayed coafice intervals in Figs. 5

and 9 (blue bars) have been widened by these timmsc

Figure 5 shows the average warming, model spreabestimate of natural
internal climate variability across the 11 climeg¢gions. The annual mean model-
estimated warming by the 2060s (Fig. 5a green blagrees C) is larger than the
90% confidence interval of natural internal varigypi(blue bars) in all regions. In
practice, this means that the warming will be gasilticeable in the yearly
average. The red lines show the 90% confidencevaiten estimated warming
across the models. The model-to-model variabiitgmall compared to the
magnitude of the projected warming. Even if we kribat one of the models used
here was perfect and the rest wrong, it would niittke difference to the

warming estimates.

The seasonal results in Fig. 5 tend to show a largeatribution from natural
variability, which is understandable since feweydare being averaged over.

10
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This is most pronounced in winter (DJF, Fig. Sbieve the typical scale of year-
to-year natural fluctuations in seasonally-averagetperature is roughly twice
the expected shift in temperatures. The uncert@atgss models (red line) is a
larger fraction of the mean warming as well. Thieselencies are minimized in
summer (JJA, Fig. 5d), where the temperature shiéisas large compared to the

natural internal climate variability as seen in ylearly average.

3.1.3 Changes in daily temperature

Only data pooled across the BCCA and dynamical doalmg techniques (which
are based on the GCM’s daily data) have been ugethfly analyses of
temperature and precipitation.

Figure 6a shows the cumulative distribution functod daily maximum
temperature in July for the historical period (hlaad future period (red). An
error function transformation is used on the Y agga Gaussian distribution
would form a straight line. All regions show a $hd a higher likelihood of
warmer daily maximum temperatures at all probaplétels. The shift is smallest
at the warmest temperatures in the Northern antlaleoastal regions, perhaps
because of the moderating influence of cool ocearperatures typically seen in
summer along California's coast. Similar curvesdaity July minimum
temperature display more Gaussian behavior (stidjnes) and lack the

reduced warming along the coast (not shown).

By contrast, January daily minimum temperatureg.(6b) show more warming
at the highest percentile values and little chdmgew the median. The
experience on the ground in January will not bénarease in every day's
minimum temperature so much as the appearanceeotiagys with temperature
several degrees warmer than experienced beforde\tfiei slopes of the lines in
Fig. 6a (July) tend to be the same or slightlysteen the future, indicating
similar or slightly reduced daily variability, tsopes of the lines in Fig. 6b (Jan)
tend to be flatter in the future, indicating greataily variability in projected

January daily minimum (and maximum, not shown) terafures.
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Three-day averages of maximum daily temperatuseimmer (Fig. 7) are of
interest to the energy industry, because peoplenare likely to use air
conditioning by the third hot day. The shifts séene are proportionally much
greater than in Fig. 6. Also, in all the inlanddtions the divergence between the
historical and future distribution becomes morenpimnced at the warmest
temperatures. In the San Joaquin valley, a 3-dapfd0 C or warmer
temperatures is only a 1-in-100-yr occurrence @ttistorical simulations, but is a
1-in-2-yr occurrence in the future simulations. Baulated 3-day average
warmest temperature in the Anza-Borrego regior6i€4n the historical era, but
51 C in the future era. Increases along the @rast2 C, although even there the
incidence of 3-day maximum temperatures with a giodlly of < 0.01 in the
historical era increases by a factor of 10.

3.2 Precipitation changes

The upper panels of Fig. 8 shows the mean pretigitahange (%) by the 2060s,
averaged across all models and downscaling tecegi@lb runs total). Lower
panels show climatological fields for comparisontie annual average (8a), the
overall tendency is for small decreases in prediijoit in the southern part of the
state (< 10%), and negligible changes in the Ndrtie patterns by season are
more pronounced, with the northern part of theestaiperiencing wetter
conditions in winter that are nearly offset by dgenditions in the rest of the
year. The southern part of the state shows modieational decreases in
precipitation in fall, winter and spring but a stgoincrease in summer
precipitation, which will be discussed more bel®&ear in mind that California is
climatologically dry in the summer, so the largegeatage increases found at that

time represent small amounts.

3.2.1 Forced versus natural changes in precipitation

Projected changes in seasonal-mean precipitati@httebe small compared to
natural internal climate variability (Fig. 9). Thiue bars (90% confidence
interval of natural variability, tenths of mm/daafe generally an order of
magnitude larger than the mean model changes (tpash At the same time, the

spread across the models (red lines) is typicatligdr than the mean model
12
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change, except for the JJA decrease in precipit@onoss the northern part of the
state (Fig. 9d). However, even precipitation shiitt are small compared to the
inter-seasonal or inter-annual variability canto@artant for the long term water
balance of a region, especially where the wateplyumas little room for

reduction. California droughts can last 5-10 yean®ng enough averaging period
to reduce natural variability sufficiently to exgosmall but systematic

precipitation shifts.

3.2.2 The influence of downscaling technique

The effect of downscaling technique on precipitatioust be interpreted
cautiously, since not all models were downscalédti all techniques. As a group,
the global models downscaled with a daily technigpigner dynamical or BCCA)
happened to be drier than the average global nmmydabout 10 percentage points
in the annual average. In general, the BCCA ancuayoal downscaling tend to
make the simulation wetter than the original glabaldel field in all regions,
typically by about 9-14 percentage points. In th@nsoon-influenced region in
the southeast of the state this tendency is sagttbe downscaling reverses the

sign of the global model projections.

The difference between downscaling techniques easdtated by using a single
global model at a time. Figure 10 shows the yegambgipitation change (%)
simulated by the different downscaling technigyasliad to the GFDL 2.1 and
CCSM3 global model runs, along with the globaldgefor comparison. The
downscaling methods all gave similar results fangerature (Fig. 3). However,
for precipitation the agreement depends on theajlolmdel. The top row of Fig.
10 shows the different downscaling techniques giwelar results when applied
to the GFDL 2.1 global model. However the bottonv i Fig. 10 shows that
different downscaling methods give quite differezdults for CCSM3 (i.e., Fig.
10g vs. Fig. 10j), with the statistical methods tresnilar to the global GCM

signal.

The diversity of responses in CCSM3 can be undedsto large part, by
considering the details of precipitation changesaoh season. Figures 11a and
11b show the statistical downscaling methods agpbeCCSM3, while Figs. 11c

13
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and 11d show the dynamical methods. Each panelssti@wegions in roughly
geographical order, and each region has a sebafsishowing the climatological
seasonal precipitation in mm (DJF, MAM, JJA, and\5©@ounting the bars from
left to right) and the change in precipitation immrojected by the downscaling
technique (colored portion of the bars). Both dyitatmethods show 20-30%
precipitation increases in winter, while the stated methods show increases of
less than 10%. Both statistical methods show MAM 8ON decreases in
precipitation of 20-30%, while the dynamical meth@thow precipitation
decreases of <10%. In other words, the statissiedldynamical downscaling
technique are showing the same patterns, but witreht weighting by season.
Depending on how the oppositely-signed tendencesvaighted, the yearly
average difference can be positive or negative.

What determines the differences between a globdkfrteend and the
corresponding dynamically downscaled trend? Th&ldressed in Fig. 12, which
shows a selection (DJF and JJA) of seasonally doaled fields driven by the
GFDL and CCSM3 global models. The values plottedtlae differences
(percentage points) between the dynamically dowedgarecipitation changes
and the changes found in the original global moldebther words, they are
differences of differences, and show not the fuprezipitation changes, but
rather how dynamical downscaling alters the origghabal model trends. In DJF,
the consistencies between the downscaled fieldgWFDL (12a, 12e, 12i), and
the consistencies between the downscaled fielag BCSM3 (12c, 129g) are
greater than the consistencies using the same dalmgtechnique but a
different global model (12a vs. 12c, and 12e vg)12his suggests that in DJF,
the effect of dynamical downscaling is influenceuinarily by the global model
characteristics (e.g., the large-scale atmospladalation), and is less sensitive

to the dynamical downscaling model used.

In summer, in the southern half of the state, R&®4,(12h) tends to show much
wetter changes than the global models (either GBDCCSM3), while WRF
(12b, 12d) shows much drier changes than the globdels (either GFDL or
CCSM3). The changes produced by RegCM3 lie in betw@&2j). This indicates
that summer precipitation is influenced more bygh#icular parameterizations

used by an individual dynamical downscaling motahtby the global driving
14
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model. In the case of RSM, this is despite the tfaat spectral nudging is used to
keep the regional model results from divergingdoeatly from the original global

model fields.

3.2.3 Changes in daily precipitation

Three-day accumulations of precipitation can belusainderstand the potential
for flooding (e.g. Das et al. 2011), as it typigathkes a few days for the soil to
saturate during a storm. The distributions of tteximum three-day accumulation
in a calendar year are shown in Fig. 13. Nearlp@a@alifornia shows striking
increases in maximum three-day accumulations, inynr@stances generating
values far outside the historical distribution. 8amresults were found in Kim
(2005), although that work considered snow/raitintitions that we are not
examining here. Along the Northern coast, the hisabdistribution tops out at 80
mm/day with a 0.01/year chance. In the future, saate value has a greater than
0.1/year chance, and the distribution now extemqd® 20 mm/day.

For planning purposes it can be useful to know tvrethe distributions of
temperature and precipitation change are relat@de¥ample, perhaps the
warmest projections are also the driest. Howeverfimd no evidence that the
changes in temperature and precipitation distrimstiare linked in any season.

4. Summary and Conclusions

Our purpose has been to present probabilistic gtiojes of temperature (T) and
precipitation (P) changes in California by the 2060/e have included daily
distributions, since a number of important applaa in energy demand, water
management, and agriculture require daily infororatWe focused on
probabilistic estimates and included natural irdéatimate variability, because it
is useful for planners to understand the rangdimiate projections and how those

compare to natural climate fluctuations.

We downscaled data from 16 global models usingnabamation of two statistical
techniques (BCSD and BCCA) and three nested regalinaate models (WRF,
RCM, and RegCM3), although not all GCMs were dovaresdt with all
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techniques. In total, we analyzed 9 runs with dddya, plus another 36 with
monthly data. As expected, the statistically dovatest fields tend to be closer to
the original global model simulations than do teaimically downscaled fields.
All downscaling techniques were combined with equailghting; exploring the
implications of weighting schemes for different dmealing techniques would be
a useful future extension of this work. We analyadustorical (1985-1994) and
future (2060-2069) time period, using one emissgoenario, SRES A2. Our
estimates of natural internal variability are cotggufrom the available 10-year
time slices and adjusted upwards (based on ansasalfyobservations) to correct
for the limited time period included. As appropegiven our focus on

applications, all model output was bias corrected.

We find that January-averaged temperatures asasodohy found in the historical
period are still seen in the 2060s, although rax@muarys warmer than any found
in the historical period are seen about 20% otithe. By contrast, cold Julys
(judging by current historical standards) nearagipear by the 2060s, and the
hottest July average temperature found in any sitiwul’s historical period
becomes a moderately cool event (18-g@rcentile) by the 2060s.The warmest
Julys are likely to be far outside the historicgberience; proportionally, the gain

in warm months will be much larger than the lossa@l months.

The downscaled T projections tend to agree acrosmscaling techniques. Year-
to-year variability in seasonally averaged T iswthiwice as large as the mean
seasonal climate warming in winter, and about thedfmean warming in summer.
In either season, the model range in projected wayns about half the mean

warming signal.

Distributions of July daily maximum T shift more lesss uniformly towards
warmer values, except along the Northern coastrevmaximum values are less
changed from today. In January, the distributiaeslittle changed below the
median, but show a shift towards a greater incidei@ few particularly warm
winter days. Distributions of the warmest 3-dayrage T, which drive air
conditioner demand, show approximately uniformtstof +2 C across the

distribution.
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Averaged across all models and downscaling teclesiqueak annual mean
decreases in precipitation are found in the soatpart of the state, and near zero
P change in the northern part of the state. Thegdeement across models is
large, however. Winters tend to become wetter énrtbrth, spring and autumn
show strong decreases in precipitation, and sunfwiegn the actual values of P
are quite small) shows less precipitation in thembut more in the south.

Natural variability is typically more than an ordd#rmagnitude greater than these
seasonally-averaged changes, and the range otponje across models includes

zero, except in summer and the southern part ddtéte in spring.

The different downscaling techniques agree lesatioual P changes than they do
for T changes. This is due to the annual P chamgeoist models being made up
of competing effects, with a tendency towards nvairger precipitation and less
spring/autumn precipitation. Different models amadvdscaling techniques weight
these competing seasonal effects differently, whanresult in a positive or

negative change in the yearly average.

The dynamical downscaling techniques show largeneases in summer P in the
region affected by the North American monsoon tlwamd with the statistical
downscaling techniques. Regional dynamical modeshle to amplify monsoon
effects that are only coarsely represented by G®G, but statistical
downscaling has no way to sharpen these featlimegeneral, the winter P
response seems more sensitive to which GCM was wéeleé the summer P
response seems more sensitive to which RCM was Assichilar finding was
reported in Pan et al. (2001).

There is a substantial increase in 3-day maximueuipitation, with peak values
increasing 10-50%, in agreement with Kim (2005)e Titcreases are largest in the
northern part of the state, where values that balyea 0.01 probability of
occurrence in the historical period become 10 timese likely by the 2060s.

Our results have wide application to the needesburce managers and other
decision makers when adapting to forthcoming cler@dtange in California. In
the realm of water management, the pronouncedaserg maximum 3-day

precipitation accumulation has implications foroitting. Likewise, these results
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shed more light on the global model finding thalifGenia will generally
experience small changes in annual mean precinitaii/e show that these small
annual mean changes are hiding much larger seasuanages, with wetter
conditions in winter and sharply drier conditionsspring and autumn, although
even these seasonal changes are small compateziniatural variability.
Generally the simulations suggest that the extreoutheast of the state will
experience more summer rainfall as the North Ana@rimonsoon intensifies,
although not all the different downscaling techmgagree as to the magnitude
and sign of this response. Probabilistic multi-madienate change evaluations
such as those developed here will enable a bettgratanding of how to adapt to

climate change's effects over California.
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Table 1

GCM
BCCR BCM
2.0
CCCMA
CGCM3.1
CNRM
CM3
CSIRO
MK3.0
GFDL
CM2.0
GFDL
CM2.1
GISS e r

INMCM 3.0
IPSL CM4

MIROC 3.2
medres
MIUB
ECHO-G
MPI-
ECHAMS5
MRI
CGCM2.3.2
NCAR
CCSM3
NCAR
PCM1
UKMO
HadCM3

Institution

Bjerknes Centre Clim. Res.,

Bergen, Norway

Canadian Centre,

Victoria, B.C., Canada

Meteo-France, Toulouse,

France

CSIRO Atmos. Res.,

Melbourne, Australia

Geophys. Fluid Dyn. Lab,

Princeton, NJ, USA

Geophys. Fluid Dyn. Lab,

Princeton, NJ, USA
NASA/Goddard Inst. Space

Studies, N.Y., USA

Inst. Num. Mathematics,

Moscow, Russia

Inst. Pierre Simon Laplace,

Paris, France

Center Climate Sys. Res.,

Tokyo, Japan

Meteor. Inst. U. Bonn, Bonn,

Germany

Max Planck Inst. Meteor.,

Hamburg, Germany

Meteor. Res. Inst., Tsukuba,

Ibaraki, Japan

Nat. Center Atmos. Res.,

Boulder, CO, USA

Nat. Center Atmos. Res.,

Boulder, CO, USA

UK Met Office, Exeter,

Devon, UK

BCSD BCCA WRF RSM

1

5

1

RegCM3

Table 1. The global general circulation models (&YMsed in this project, their

originating institution, and the number of ensemhlEmbers downscaled by the

indicated method. BCSD: bias correction with spatisaggregation; BCCA: bias

correction with constructed analogues; WRF: weatbgearch forecast model;

RSM: regional spectral model; RegCM3: Regional alienmodel version 3.
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Figure 1. Upper: temperature change (°C) from y&885-94 to 2060-69. The seasonally-
averaged data from all models and downscaling fgales was averaged across models to
generate the values. The regions used in this ax@lalso shown. Lower: temperature climatology

(°C) averaged across the models, and observed lameaa for comparison (lower right).
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Figure 2. Correspondence between percentiles ofhhyeaveraged temperature in the historical
period (x axis) and future period (y axis), for dary (left) and July (right). For instance, theelu
cross in panel a for the Sacramento/Central valteys that the 80percentile temperature in the
historical period will become the T percentile value in the 2060s. The grey line shavat the
result would be if there were no changes in theibigions. The regions are plotted in roughly
geographic order (Northwest locations in the tdp &ic.). The figure is made with monthly data

from all 45 model runs.
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Figure 4. Probability of a temperature change efitidicated value or greater, by region and

season. The regions are plotted in roughly geograpller (Northwest locations in the top left,

etc.). Monthly data from all 45 runs is used to méhe figure.
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Figure 5. A comparison of the contribution of natunternal climate variability and model

uncertainty to yearly and seasonally averaged pt®jetemperature changes by the 2060s. Blue

bars show the 90% confidence interval of naturtrimal climate variability in near surface air

temperature (C) estimated across all models. Gvaenshow the mean model warming projected

in the period 2060-69. The red line shows the 90%idence interval in the projected warming

across models. Note that each inset plot has erdift scale for the Y axis, in degrees C. Monthly

data from all 45 runs is used to make the figure.

29



693

694
695
696
697
698
699
700

a) July daily Tmax (C) b) January daily Tmin (C)

NorCal coast NorCal central Northeast Cal NorCal coast NorCal central Northeast Cal
0.99 0.99 0.99 0.99 0.99 0.99
0.9 0.9 0 0.9 0.9 0.9
0.75 0.75 0.75 0.75 0.75 0.75
0.5 0.5] 0 0.5 0.5 0.5]
0.25 0.25 0.25 0.25 0.25 0.25
0 0 0.1 0.1 0.1 0.1
0.01 0.01 0.01 0.01 0.01 0.01

15 25 20 30 40 15 25 35 -5 5 -10 05 -20 -5 5

Central coast Sac/Cent valley Sierra Nevada Central coast Sac/Cent valley Sierra Nevada
0.99 0.99 0.99 0.99 0.99 0.99
0.9 0.9 0 0.9 0.9 0.9
0.75 0.75 0.75 0.75 0.75 0.75
0.5 0.5] 0 0.5 0.5 0.5]
0.25 0.25 0.25 0.25 0.25 0.25
0 0 0.1 0.1 0.1 0.1
0.01 0.01 0.01 0.01 0.01 0.01

20 30 25 35 15 25 35 -5 0 5 10 -5 5 -15 -5 5

San Joaq. valle' Inland empire San Joaq. valle' Inland empire
0.99 0.99 0.99 0.99
o7 o7 02 o7
— Historical "5 05 — Historical "5 05
—_ 0.25 0.25 —_ 0.25 0.25
Future &3 & Future &3 &
0.01 0.01 0.01 0.01

25 35 25 35 -5 5 -10 05

SoCal coast SoCal mtns Anza-Borrego SoCal coast SoCal mtns Anza-Borrego
0.99 0.99 0.99 0.99 0.99 0.99
0.9 0 0 0.9 0.9 0.9
0.75 0.75 0.75 0.75 0.75 0.75
0.5 0 0 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.25 0.25
0 0.1 0.1 0.1 0.1 0.1
0.01 0.01 0.01 0.01 0.01 0.01

25 35 25 35 35 45 -5 5 15 -10 05 -5 5 1E

Figure 6. Cumulative distribution functions of Jalgily maximum temperature (left) and Januray
daily minimum temperature (right) across the regifplotted roughly geographically). The Y axis
shows the probability (zero to one) of experiendimgindicated temperature or lower on any
particular day. Results from the historical run iarelue; the future run is in red. Large solidslot
show where the two curves are different at the 8kfificance level, evaluated using a bootstrap
technique. Open circles indicate statistically stidiguishable values. Data from the 9 runs with

daily data was used to make the figure.
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Figure 7. Cumulative distribution functions of thighest 3-day average temperature in the year.

The Y axis shows the probability (zero to one) afihg the warmest 3 days in a year be the

indicated temperature or lower. Results from tisdnical run are in blue; the future run is in red.

Panels are plotted roughly geographically. Lardig stots show where the two curves are

different at the 95% significance level evaluatsthg a bootstrap technique. Data from the 9 runs

with daily data was used to make the figure.
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Figure 8. Upper panels: Precipitation change (¥&amover the period 2060-69 compared to
mean over the period 1985-94. Data from all modets downscaling techniques was averaged to
generate the values. Lower panels: model climaicddgrecipitation (tenths of mm/day), and

annual average from observations for comparisongtaight).
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Figure 9. A comparison of the contribution of natunternal climate variability and model
uncertainty to yearly and seasonally averaged pitation changes. Blue bars show the 90%
confidence interval of natural internal climateighility in seasonally averaged precipitation
(tenths of mm/day) estimated across all modelstifeperiod 2060-69. Green bars show the mean
model precipitation change projected in the pe#660-69. The red line shows the 90%
confidence interval in the projected precipitatairange across models. Note that each inset plot

has a different scale for the Y axis. Monthly datem all 45 runs is used to make the figure.
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Figure 10. Yearly precipitation change (%, 2060286mpared to 1985-1994) from each
downscaling technique applied to the GFDL 2.1 ¢mp) and CCSM3 (bottom row) global
models. The yearly precipitation changes from tloeba models are shown in panels f and k, for
comparison. Since the effect of downscaling onglbéal model fields is being illustrated, only
one BCSD ensemble member is shown, the one comdsypto the illustrated global model and

used for the dynamical downscaling.
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Figure 11. Changes in precipitation for the différdownscaling methods applied to the CCSM3
global model. In each panel a-d, the subpanels shewrecipitation changes by region, arranged
roughly geographically. The bars show each regisgesonal precipitation (mm) in DJF, MAM,
JJA, and SON (left to right) in the future and bigtal periods. The difference between the future
and historical precipitation is colored, with trelar determined by the percentage change using
the same scale as Fig. 10 (yellows/oranges sh@plegipitation, blue/green show more

precipitation). Note that every set of bars ha#ffarént Y axis, in mm.

35



736

737  Figure 12. Difference (percentage points) betwaerchange in seasonal precipitation projected
738 by the dynamically downscaled simulations and thenge found in the original global model
739 (GFDL 2.1 or CCSM3, as labeled). Only winter (DaRY summer (JJA) fields are shown.
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Figure 13. Cumulative distribution functions (CDe$the maximum 3-day mean precipitation in
a calendar year. Regions are plotted roughly gedgeally. Y axis is probability (0-1) of
experiencing the indicated average 3-day precipitatite (mm/day), or lower. Large solid dots
show where the two curves are different at the 8kfificance level, evaluated using a bootstrap
technique. Open circles indicate statistically stidiguishable values. Data from the 9 runs with

daily data was used to make the figure.
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747 Supplemental Material for

748 Probabilistic estimates of future changes in
749 California temperature and precipitation using

750 Statistical and dynamical downscaling

751 David W. Pierct’, Tapash Dd<, Daniel R. Cayah Edwin P. Maurér Norman
752  Miller®, Yan Bad, M. Kanamitst, Kei Yoshimurd, Mark A. Snydef, Lisa C.
753  Sloarl, Guido Francg Mary Tyreé

754 1. Descriptions of the Regional Climate Models (RCM  s)

755 1.1 Regional Climate Model version 3 (RegCM3)

756 RegCMa3 is a third-generation regional-scale clinmatalel derived from the

757 National Center for Atmospheric Research-Pennsydvamte (NCAR-PSU)

758 MM5 mesoscale model (Pal et al. 2007). RegCM3 hasame dynamical core as
759 MMD5, the CCM3 radiative transfer package, and tlespghere-Atmosphere

760 Transfer Scheme (BATS) land surface model (Dickinsbal., 1986; Giorgi et al.,
761 2003). RegCM has been validated against obsensatibmodern-day climate in
762 multiple domains, and does well in simulating thatgal and temporal climate
763 features of California (Snyder et al. 2002, Belhket2004). For this study

764 RegCM3 was configured with the Holtslag boundagetascheme (Holtslag et
765 al., 1990), Grell cumulus scheme (Grell, 1993) wiiitd Fritsch and Chappell

766 closure scheme (Fritsch and Chappell, 1980), an@#mg (1998) ocean flux

767 parameterization. The model domain is centered Gaéfornia with a horizontal

768 resolution of 10 km and 18 levels in the vertical.

769 1.2 Weather Research and Forecasting model (WRF)

770 We use a version of NCAR WRF version 3 couplecheodommunity land
771 surface model version 3.5 (CLM3.5; Oleson et a4 0referred to as “WRF-
772 CLM3”in Miller et al. (2009). The combination has advanced land surface

773 scheme with sub-grid representation for snow amgtagion, lateral hydrologic
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flow capability, and the potential for time-evolgiplant functional types. The
WRF model is set up with 10 km horizontal resolntiand uses the Kain-Fritsch
convection parameterization for cumulus clouds (Kand Fritsch 1993), the
Yonsei University (YSU) planetary boundary layeB[} scheme (Hong and Pan
1996), and the Medium Range Forecast Model turlzeletosure scheme (Mellor
and Yamada 1982). The microphysics package usedsidre WRF Single-
Moment 3-class (WSM3) scheme (Hong et al. 2004]},the Rapid Radiative
Transfer Model (RRTM) based on Mlawer et al. (1984)sed for describing
longwave radiation transfer within the atmosphera @ the surface, and the
shortwave scheme developed by Dudhia (1989). Dyrelrdownscaling using
WRF has been evaluated over the state of Calif¢@addwell et al. 2009), and
WRF coupled to CLM3.5 has been used to show thei@és in vegetation can

have appreciable effects on local climate (Subial.€2011).

1.3 Regional Spectral Model (RSM)

The version of the regional spectral model (RSMidulsere is a development of
the National Centers for Environmental PredictiNCEP) global spectral model
(GSM). The original regional code has been modifeetave greater flexibility
and increased efficiency (Kanamitsu et al., 2006 RSM uses a two-
dimensional spectral decomposition, and is impleéegtwith so-called “spectral
nudging’, i.e., relaxation towards the low-frequgreomponents of the global
simulation over the regional domain (Kanamaru aadanitsu 2007). The
configuration used here is similar to that usededoerate the 10-km California
Reanalysis Downscaling (CaRD10) data set (KananaitslKanamuru, 2007). A
scale-selective bias correction (SSBC) was useiagithese runs (Kanamaru and
Kanamitsu 2007). The Noah land surface model vath oil layers was used,
and cloud water and cloudiness are implementedagmpstic variables (Tiedtke
1993; lacobellis and Sommerville 2000).

2. Statistical downscaling methods

We use two different statistical downscaling tegiueis. Both operate on bias-

corrected GCM data; the bias correction (BC) proceds described in section
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2.3. The BCCA technique downscales daily global ehadta, while the BCSD

technique downscales monthly global model data.

2.1 Bias Correction with Spatial Disaggregation (BCSD)

BCSD (Wood et al. 2002, 2004) generates daily-fesslution (1/8x 1/8 in this
implementation) fields from monthly, bias-correcte@M data by expressing
these coarse (GCM-scale) monthly values of aveieagperature and
precipitation as anomalies relative to a historatehatology. The monthly GCM
anomalies are interpolated onto the fine-scale, ¢gneh applied, by offsetting (for
temperature) or scaling (for precipitation), to lbeg term mean at the fine scale.
This produces a fine scale monthly downscaled valaeggenerate daily
variability within each month an analogue monthnirthe historical observations
is selected, with the selected month being the saoreh of the year as the data
being downscaled. The daily observed data for ttadogue month on the fine-
scale grid is then offset (for temperature) or sgdgfor precipitation) so that each
grid cell's monthly mean matches the monthly dowlestvalue. Since analogue
months from the historical period are used to geeethe daily sequences, we do
not analyze BCSD-generated distributions of dailyffe climate variables. BCSD
downscaling is used, for example, by Hayhoe €2&04), Maurer (2007), and
Vicuna et al. (2007).

2.2 Bias Correction with Constructed Analogues (BCCA)

BCCA uses bias correction along with downscalingaify GCM fields via
constructed analogues (Hidalgo et al., 2008; Maeirat. 2010). BCCA is
therefore the CANA method described by Miller et(2D09) along with a BC
step applied to the GCM temperature and precipitdields. The constructed
analogue technique starts with a library of daibtdrical observations on a 2/8
1/8° grid. This fine scale data is coarsened to the G, and the 30 best
matches (analogues) between the GCM fields fordagt(including in the library
observed days within a £ 45 day window of the tadg¢e) and the coarsened
observations are computed. The 30 analogues arkiged) using the strength of

their correspondence to the GCM grid as weights, anGCM-sclae constructed
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analogue. The same linear combination is then eghpdi the fine scale observed

data to obtain the final downscaled data for a day.

3. Bias correction procedure

The output of the GCMs was bias corrected to olagiems (Maurer et al. 2002)
before statistical downscaling, while the outputhed dynamical RCMs was bias
corrected after being generated. In general, bdfias correction the RCMs tend
to display 10-20% drier than observed conditiontheaNorthern part of the state
in winter, 20-50% too wet conditions in the inlashekert regions in winter, 10-
20% wetter conditions than observed in the Northpam of the state in spring,
and an overall warm bias of 0.1-2.0 C throughoaty®ar.

BCSD starts with monthly GCM data, which we biagect using the quantile-
mapping technique (Panofsky and Brier, 1968), desdrin Maurer (2007), based
on Wood et al. (2002, 2004). The mapping parametersletermined for each
month by comparing the model results to the obsemsover the
model/observations overlap period 1950-1999, aad #re applied to the future
period. The assumption is that the biases are mgetbin the future (cf. Liang et
al. 2008). For bias correcting GCM output, Woodle{2004) suggest as long a
historical period as possible be used to charaetenionthly GCM biases, with
ranges for robust error correction from 20-50 yéardonger). For temperature,
the linear trend from the GCM output (interpolatedhe fine scale grid) was
removed at each point before the BC procedure wpalseal, and then added back
in afterwards. The reason for this is explained\iyod et al. (2004): as
temperatures rise in the future they are found rfrequently outside the historic
range, requiring excessive extrapolation duringgis@ntile mapping.
Precipitation, with typically much greater interamahvariability than temperature,
does not generally experience trends that extilstgroblem during remapping,
so the trend removal and replacement was not a@pplietheory, this procedure
has the advantage that the final result preseheesriginal trend in the global
model, but the disadvantage that the resultingltieressentially that of the
interpolated global model. In practice, the appiaaof bias correction can still
modify the original global model trends for reasemrplained below.
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The BCCA and RCM data are daily. We bias correetdhily data using a similar
guantile mapping technique, described in Maured.g2010). The historical
period used for the monthly BCCA downscaling was3b-yr span 1950-1999,
but only the 10-yr period 1984-1995 is availabletfee RCM data. When bias
correcting daily (instead of monthly) data, 10 yweisradequate, as 10 years of
daily information (~3652 time steps) provides cdesably more samples than 50
years of monthly information (600 time steps) (Maugt al., manuscript in
preparation; see also Chen et al. 2011).

In contrast to BCSD, the global trend was not reedo&nd then reapplied for the
BCCA and RCM data, since the motivation for treachoval and replacement
described above is not as strong for daily dataekample, since a large portion
of the trend in daily temperatures is due to mogguent warm temperatures (as
opposed to relatively few record hot temperatuBsltinger et al. 2004), which
are represented in the historic period, the tremdoval and replacement
procedure is less necessary. This also meandhateind in these data sets is free
to differ from the GCM trend. Since the basic asgtiom of downscaling is that it
adds regionalized information to the global sigttak is a desirable

characteristic.

However, the bias correction itself can modify ¢ghebal trend (Hagemann et al.
2011). Table SM1 illustrates this for July averdgdy temperature at one grid
point. Bias correction modifies the variance of @€M output, since GCM
simulations inevitably contain biases in variargiew, and higher moments. The
historical mapping is applied to future projectipss this process changes the
statistical properties of the GCM projections. Tiaisle shows that when bias
correction increases the standard deviation oftbethly data, then the low-
frequency trend increases as well; when BC decsaasestandard deviation, the
trend decreases. In essence, the procedure asthahesors in the amplitude of
variability apply equally on all timescales, frorail¢ to the secular trend.
Whether the trend modification is appropriate giG@M errors in simulating
variability or if the raw simulated trend should freserved through the

downscaling procedure is an open question.
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896 4. Errors in the estimation of natural internal cli mate variability

897 The procedure described in the main text sectibr?2 inderestimates the value of
898 natural internal climate variability since it isdeal the spread around the 10-yr
899 average during the 2060’s, but the 10-yr averaggfiwill be affected by low-

900 frequency natural internal climate variability. Téiee of this effect can be

901 estimated from the historical record, assuming filnatre changes in the spectral

902 structure of natural variability will be modest.

903 Using the technique described in Appendix A of Bdir& Pierce (2008)

904 (transforming an observed time series to frequepace, randomizing the phases,
905 and transforming back while taking sampling undetyain the estimate of the

906 spectral amplitudes into account), we constructirandom time series for each
907 variable (T, P) and each California region. Obsénwme series were computed
908 from Hamlet and Lettenmaier (2005). Each randone ts@ries, by construction,
909 has a mean and spectrum that is indistinguishate dbservations (within

910 sampling uncertainty). We then used the 200 rantiim series to calculate the
911 natural variability as done in section 3.1.2 (ibGayr chunk) and compared it to

912 the variability directly calculated from the fuihte series.

913 For temperature, the true 90% confidence intenad 8-20% wider than

914 calculated as in the manuscript; for precipitatite, true 90% C.l. was 5-25%
915 wider (Table SM2). This overstates the error inteanperature, since all

916 California regions show a strong warming over theewved time period that has
917 been shown to be anthropogenic in origin (e.g.,flBoat al., 2008). Using a

918 simple linear detrending for temperature and reaging, the true C.I. for

919 temperature was 6-14% wider than indicated by tethod used in the

920 manuscript. Figures 5 and 9 in the main text haenlcorrected to show this
921 wider range for natural internal variability (thii® bars).

922 Supplemental Material References

923 Barnett TB, Pierce DW (2008) When will Lake Meaddyg? Water Resources Res 44:W03201
924  doi:10.1029/2007WR006704
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1006 Table SM1

Statistic NCAR CNRM NCAR GFDL
CCSM3 CM3 PCM1 CmM2.1
pre bias correction 0.84 0.66 0.49 0.73
post bias correction 0.67 0.85 0.50 0.60
DT pre bias correction 2.7 1.7 1.3 2.3
DT post bias
2.2 2.3 1.3 1.9
correction

1007

1008 Table SM1. An example of the effect of bias coiiggtbn the standard deviation
1009 () of average daily July temperature (for a futueeigd of 2040-2069) on the
1010 projected changes in temperatudd ) between the future period and a historic
1011 baseline of 1950-1999 for a single grid point leckat latitude 39, longitude -121,

1012 over northern California.
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1013

1014

1015
1016
1017
1018
1019
1020

1021

Table SM2

Region a) T error b) T error c) P error
(detrended)

S. California coast 20% 13% 9%

Anza-Borrego 8% 6% 25%

San Joaquin 14% 8% 9%

valley

Sierra Nevada 7% 7% 5%

Northeast 6% 8% 9%

California

N. California 18% 14% 6%

coast

Central N. 10% 10% 5%

California

Central coast 19% 8% 6%

S. California 11% 9% 10%

Mtns.

Inland Empire 12% 7% 13%

Sac/Central 19% 6% 9%

Valley

Table SM2. Estimated error in the 90% confidenteriual of natural internal

climate variability obtained when taking the averagth respect to a 10-year

period rather than using the entire period of réc¥ialues are based on

observations over the period 1915-2004. Columemptrature; b) temperature,

but detrending the temperature record first to negremthropogenic warming; c)

precipitation. See supplemental material text (sact) for details.
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