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ABSTRACT1
2

This article applies formal detection and attribution techniques to investigate the nature of 3

observed shifts in the timing of streamflow in the western United States (US).  Previous 4

studies have shown that the snow hydrology of the western US has changed in the second 5

half of the 20th century.  Such changes manifest themselves in the form of more rain and 6

less snow, in reductions in the snow water contents and in earlier snowmelt and 7

associated advances in streamflow “center” timing (the day in the “water-year” on 8

average when half the water-year flow at a point has passed). However, with one 9

exception over a more limited domain, no other study has attempted to formally attribute 10

these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using 11

the observations together with a set of global climate model (GCM) simulations and a 12

hydrologic model (applied to three major hydrological regions of the western US – the 13

California region, the Upper Colorado River basin and the Columbia River basin), we 14

find that the observed trends toward earlier “center” timing of snowmelt-driven 15

streamflows in the western US since 1950 are detectably different from natural variability 16

(significant at the p<0.05 level). Furthermore, the non-natural parts of these changes can 17

be attributed confidently to climate changes induced by anthropogenic greenhouse gases, 18

aerosols, ozone, and land-use.  The signal from the Columbia dominates the analysis, 19

and it is the only basin that showed detectable signal when the analysis was performed on 20

individual basins.  It should be noted that although climate change is an important signal, 21

other climatic processes have also contributed to the hydrologic variability of large basins 22
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in the western US.1

2
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1.  INTRODUCTION1

Previous studies have found hydroclimatological changes in the last 50 years in 2

the western United States (US).  The changes are evident in the timing of spring runoff 3

(Roos 1987,1991; Wahl 1992; Aguado et al. 1992; Pupacko 1993; Dettinger and Cayan 4

1995; Regonda et al. 2005; Stewart et al. 2005), in the fraction of rain versus snow 5

(Knowles et al. 2006), in the amount of water contained in the snow (Mote 2003) and in 6

climate-sensitive biological variables (Cayan et al. 2001).  It has been thought that these 7

changes are related mainly to temperature increases as they affect snowmelt-dominated 8

basins in ways predicted in response to warming (Mote 2003, Barnett et al. 2005; Stewart 9

et al. 2005; Maurer et al. 2007) and suspected that the warming trends causing the 10

changes are in part due to anthropogenic effects.  Except for a recent study of California 11

rivers (Maurer et al., 2007), though, no other study has attempted formally to detect and 12

attribute those hydrometeorological changes to anthropogenic effects.   13

The present article is one of a series of papers describing detection and attribution 14

of the causes of hydroclimatological change in the western US (Barnett et al. 2008, 15

Bonfils et al. 2008, Pierce et al. 2008).  In particular, this paper focuses on shifts in the 16

timing of streamflow.  We investigate whether the shifts in streamflow over the past 50 17

years are unlikely to have come about by natural variability – and, if so, whether these 18

changes can be confidently attributed to human-caused climate change.19

The western US is particularly susceptible to temperature changes as (historically) 20

a large fraction of the precipitation falling in the mountainous regions of the West occurs 21
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on days where the temperature is just a few degrees below 0oC (Bales et al. 2006).  1

Presumably, this precipitation would change from snow to rain in warming climatic 2

scenarios that increase the air temperature by a few degrees.  As an example, from 1949 3

to 2004 the warming of less than 3oC in winter wet-day temperatures across the region 4

has resulted in significant negative trends in the snowfall water equivalent (SFE) divided 5

by the fraction of winter precipitation (P) falling on snowy days (SFE/P) (Knowles et al. 6

2006).  Knowles et al. (2006) also found that although the Pacific Decadal Oscillation 7

(PDO; Mantua et al. 1997) may have influenced wet day temperatures and snowfall 8

fractions at interdecadal time-scales, longer-term changes also appear to have been 9

occurring.  This is also consistent with the findings of Stewart et al. (2004) and Mote et 10

al. (2005; 2008) with respect to streamflow timing and snow-water contents, respectively. 11

While the overall volumes of annual streamflow have not changed much over the past 50 12

years, the warming-induced changes are manifested in changes in the interseasonal 13

distribution of streamflow.  In particular, the March fraction of annual streamflow has 14

increased, while the April to July fraction has decreased in some basins, with the center 15

timing of streamflow (CT) in snow-dominated basins showing significant shifts towards 16

earlier times in the spring (Dettinger and Cayan 1995; Stewart et al. 2005).  Moore et al. 17

(2007) mention that the definition of CT used by Stewart et al. 2005 (i.e. centroid) is 18

similar to the date when 50% of the water-year flow has passed (DQF50) but this later 19

index is less sensitive to outliers in the flow. Consistently with Regonda et al. (2005), 20

Maurer et al. (2007), Moore et al. (2007), Rauscher et al. (2008) and Burn (2008), we will 21
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use CT as the date of the year when 50% of the water-year flow has passed (DQF50). In 1

Déry et al. (2008) the CT, as calculated here is criticized as a method for computing the 2

timing of streamflow. The authors argue that for certain Canadian rivers there is a 3

correlation between the annual flow and CT and that the influence from late season 4

precipitation and glaciers could affect CT. In our case, the correlation between the flow 5

and CT is non-significant at the 95% confidence level, there is only a marginal6

contribution to the flow from glaciers and the contribution from summer storms to the 7

flow is negligible compared to the winter values, giving us confidence that we can index 8

the timing of streamflow using CT.  9

In this study, two GCM control runs are used to characterize CT natural 10

variability. Using these runs, we will determine whether the trends in the observations 11

are to be found in the distribution of trends from natural variability alone.  In those cases 12

where the trends in the observations lie (statistically) significantly outside the distribution 13

of the natural variability, “detection” is achieved (Hegerl et al. 2006).  Several forced 14

runs will be used to attribute detected signals to anthropogenic or to solar-volcanic 15

forcings on the climate.  In all model runs, we will downscale the data from the climate 16

models to a 1/8-degree resolution grid and then run the downscaled estimates through the 17

Variable Infiltration Capacity (VIC, Liang et al. 1994) hydrological model.  In contrast to 18

detection, attribution of anthropogenic climate change impacts is the process of 19

determining whether the observed impacts are: a) consistent with the type of changes 20

obtained from climate simulations that include external anthropogenic forcings and 21
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internal variability and b) inconsistent with other explanations of climate change (Hegerl 1

et al. 2006).  Detection and attribution studies have been conducted for a number of 2

measures of the climate of the atmosphere and ocean (Barnett et al. 2001; 2006 Hegerl et 3

al. 2006; Hoerling et al. 2006; Zhang et al. 2007; Santer et al., 2007; IPCC 2007).  A 4

review of previous detection and attribution studies is available from the International Ad 5

Hoc Detection and Attribution Group (2005).  Most of those previous studies examine 6

global or continental scale quantities.  This study differs by attempting to perform 7

detection and attribution on a regional scale, which is generally more difficult than the 8

larger scale analyses because the signal to noise ratio is proportional to the spatial scale 9

of analysis (Karoly and Wu, 2005).  This study also is one of the first formal detection 10

and attribution studies of hydrological variables. 11

12

2. METHODS, MODELS AND DATA SOURCES13

To investigate the detectability and possible attribution of climate change effects on 14

streamflow timing in the western US, we employed a particular detection method; several 15

climate model simulations (including control runs and also runs that were driven by 16

anthropogenic forcings or by solar and volcanic forcings); two statistical procedures to 17

downscale the GCM output to a hydrologically-suited terrain scale; a macro-scale 18

hydrological model with river routing; a set of observed meteorological data over the 19

western US; and observed streamflow data for key large basins.  These elements are each 20

described in the following sections.21
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1

2.1 THE OPTIMAL DETECTION METHOD2

As noted earlier, “detection” of climate change is a procedure to evaluate whether 3

observed changes are likely to have occurred from natural variations of the climate 4

system.  The optimal detection method is applied here. Details of the method can be 5

found in Hegerl et al. (1996, 1997); Tett et al, (1999); Allen and Tett (1999); and Barnett 6

et al. (2001).  Given a variable for detection, the basic idea is to reduce the problem of 7

multiple dimensions (n) to a univariate or low-dimensional problem (Hegerl et al. 1996).  8

In this low-dimensional space, the detection of signals above the natural variability 9

“noise” can be contrasted. That is, the trends in observed CT will be compared to the 10

distribution of trends from the control run. Also, the detected vector can be compared 11

with the vector obtained from the expected climate change pattern.  As in Hegerl et al. 12

(1996), we are using a simplified version of the method in which the signal strength (S) is 13

actually the trend of the climate vector projected into the fingerprint for each of the 14

climate runs.  Specifically, S was defined as:15

16
( )),()( txDxFtrendS •= (1)17

18

where F(x) is the signal fingerprint, D(x,t) is the 3 regional time series of any ensemble 19

model run or the observations and ‘trend’ indicates the slope of the least-squares best-fit20

line. Uncertainty in the signal strength is calculated from a Monte Carlo simulation (see 21

following sections).  The 95% confidence intervals computed using traditional t-test 22
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statistics are approximately 0.91 times the confidence intervals obtained from the Monte 1

Carlo method, suggesting that the autocorrelation and ensemble averaging have some 2

effect on the size of the confidence intervals, with the Monte Carlo intervals being the 3

most conservative estimates.  For reference an assessment of S significance using 4

traditional statistics (t-student probabilities from the slope of the best fit line and the non-5

parametric Mann-Kendall test) will be presented in following sections.  In the low-6

dimensional space, the signal strength will be used to a) determine if the observations 7

contain a significant signal above the natural variability in the system, as determined 8

from two extensive control runs; and b) to test the hypothesis that the trends of 9

anthropogenically forced runs have the same signs as the trends in the observations and 10

that these signs are different than the solar-volcanic forced runs.11

12

2.2 CLIMATE MODELS13

An 850-year control simulation using the Community Climate System Model 14

version 3.0, Finite Volume (CCSM3-FV; Collins et al. 2007; Bala et al. 2008) general 15

circulation model (GCM) will be used here to characterize natural inherent climate 16

variability in the absence of human effects on climate (hereinafter called the 17

CONTROLccsm run). CCSM3-FV is a fully coupled ocean-atmosphere model, run with 18

no flux corrections, and an atmospheric latitude/longitude resolution of 1x1.25 degrees 19

and 26 vertical levels.  In addition, 750 years of a control run (run B06.62) from the 20

Parallel Climate Model version 2.1 (PCM; Washington et al. 2000) at a resolution of 21
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T42L26 (hereinafter CONTROLpcm run) will be used to verify our results.    The 1

anthropogenically forced signal of climate change will be obtained from four simulations 2

(runs B06.22, B06.23, B06.27, and B06.28) by PCM under anthropogenic forcings 3

(hereinafter ANTHROpcm runs) as well as from ten realizations of the MIROC model 4

(medres T42L20; Hasumi and Emori 2004; Nozawa et al. 2007; hereafter 5

ANTHROmiroc runs) also with anthropogenic forcings. Two realizations of the PCM 6

forced with solar and volcanic forcings only (runs B06.68 and B06.69) were obtained 7

from the Intergovernmental Panel on Climate Change (IPCC) website (http://www.ipcc-8

data.org/).  These latter data are used to test whether observed natural solar and volcanic 9

effects can explain the observed river flow changes. The characteristics of the models and 10

simulations are indicated in Table 1.11

12

The control runs include only internal variability (no forcings).  The ANTHROpcm runs 13

include greenhouse gases, ozone and direct effect of sulfate aerosols.  The 14

ANTHROmiroc runs include the previous forcings, plus the indirect effect of sulfate 15

aerosols, direct and indirect effects of carbonaceous aerosols and land-use change 16

(supplementary material Barnett et al. 2008).  The PCM and MIROC anthropogenic runs 17

do not include solar and volcanic forcings, so they are not “all forcings” runs.  We used 18

these ANTHRO runs because we wanted to separate the effects of solar volcanic and 19

anthropogenic effects in the detection procedure.  All models selected required to have a 20

good representation of typical sea surface temperature patterns of El Niño- Southern 21
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Oscillation (ENSO) and the PDO (Bonfils et al. 2008; Pierce et al. 2008).  Another 1

requirement was the availability of daily precipitation and temperature data. 2

3

2.3 DOWNSCALING METHODS 4

The data from the CONTROLccsm, solar and volcanic runs, and ANTHROmiroc 5

were downscaled to a 1/8 x 1/8 degree resolution grid over the western US basins using 6

the method of constructed analogues (CA; Hidalgo et al. 2008).  Data from the 7

CONTROLpcm were downscaled to the same resolution using the method of Bias 8

Correction and Spatial Disaggregation (BCSD; Wood et al. 2004), as were the 9

ANTHROpcm runs.   An intercomparison of the methods of downscaling can be found in 10

Maurer and Hidalgo (2008). The most notable difference between the two methods on the 11

decadal timescales of interest here is that trends are modestly weaker in the CA method 12

than in the BCSD (Maurer and Hidalgo 2008).13

14

2.3.1      Constructed Analogues Downscaling15

The CA method is an analogous-based statistical downscaling approach 16

described in detail in Hidalgo et al. (2008).  In the Appendix a description of the 17

mathematical procedures of the method is included.  The downscaling is performed on 18

the temperature and precipitation daily anomaly patterns from the GCM.  The base period 19

for computing anomalies is 1950 to 1976.  A simple bias correction procedure is 20

accomplished by dividing the anomalies at each grid point of the GCM by the standard 21
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deviation of the model and multiplying the result by the standard deviation of the 1

observations.  The precipitation was transformed by a square root before processing to 2

make its distribution more Gaussian. 3

The coarse-resolution target pattern to be downscaled from a climate model for a 4

particular day is estimated using a linear combination of previously observed patterns 5

(library) that are similar to the target pattern.  The linear estimate at the coarse scale of 6

the target pattern is called the analogue.  The downscaled estimate is constructed by 7

applying the same linear combination of coefficients obtained at the coarse-scale to the 8

high-resolution patterns corresponding to the same days used to derive the analogue.   In 9

this application of the CA, the library patterns were composed of the Maurer et al. (2002) 10

daily precipitation and temperature gridded observations, aggregated at the resolution of 11

each climate model, from 1950 to 1976 along with the corresponding 1/8-degree versions 12

for the same days.  As in Hidalgo et al. (2008), the estimation of the target pattern was 13

constructed by using as predictors the best 30 analogues (based on the pattern root mean 14

square error (RMSE) distance from the target) selected from all days in the historical 15

record within ±45 days of the day of year of the target.  The domain of the downscaled 16

meteorological data contains the four major hydrological regions of the western US: the 17

Columbia River Basin, California, the Colorado River Basin and the Great Basin (Figure 18

1). A list of the characteristics of the basins can be found in Table 2.19

20

2.3.2 Bias Correction and Spatial Disaggregation Downscaling21
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The BCSD method is described in detail in Wood et al. (2002; 2004) and has been 1

used previously in a number of climate studies for the western US (Van Rheenen et al., 2

2004; Christensen et al., 2004; Payne et al., 2004; Maurer et al., 2007).  In brief, the two-3

step procedure first removes bias more rigorously than for the CA method.  The bias is 4

removed on a climate model grid cell specific basis by using a mapping from the 5

probability density functions for the monthly GCM precipitation and temperature to those 6

of observations, spatially aggregated to the GCM scale.  The adjusted climate model 7

simulation outputs from this step are then expressed as anomalies from long term 8

observed means at the climate model scale.  Spatial disaggregation is achieved by the 9

second step, in which the month-long daily sequences of precipitation and temperature 10

minima and maxima at the 1/8-degree scale are randomly drawn from the historical 11

record, and then scaled (for precipitation) or shifted (for temperatures) so that the 12

monthly averages reproduce the climate model scale anomalies.  Two constraints are 13

applied:  that the selected month is the same calendar month as the month being 14

downscaled; and that the same sample year is applied to all grid cells within the basin for 15

each month, which preserves a plausible spatial structure of precipitation and 16

temperature. 17

18

2.4 HYDROLOGICAL MODEL19

The downscaled precipitation (P), maximum temperature (Tmax) and minimum 20

temperature (Tmin) data along with climatological windspeed from all the runs were used 21



14

as input to the macroscale Variable Infiltration Capacity (VIC; Liang et al. 1994) 1

hydrological model.  VIC simulates a full complement of hydrological variables making 2

up the land surface water and energy balance such as soil moisture, snow water 3

equivalent (SWE), baseflow and runoff, using daily meteorological data as time-varying 4

input, based on parameterized soil and vegetation properties.  The land surface is 5

modeled using a tiled configuration of vegetation covers, while the subsurface flow is 6

modeled using three soil layers of different thicknesses (Liang et al. 1994, Sheffield et al.  7

2004).  Defining characteristics of VIC are the probabilistic treatment of sub-grid soil 8

moisture capacity distribution, the parameterization of baseflow as a nonlinear recession 9

from the lower soil layer, and that the unsaturated hydraulic conductivity at each 10

particular time step is a function of the degree of saturation of the soil (Campbell 1974; 11

Liang et al.  1994; Sheffield et al.  2004).  Details on the characteristics of the model can 12

be found elsewhere (Liang et al.  1994; Cherkauer et al.  2002; 13

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html).  The model 14

was run using the water-balance mode at 1/8-degree resolution over the western US 15

(Figure 1). VIC has been used extensively in a variety of water resources applications; 16

from studies of climate variability, forecasting and climate change studies (e.g. Wood et 17

al.  1997; 2002; 2004; Nijssen et al.  1997; 2001; Hamlet and Lettenmaier  1999).18

19

2.5 NATURALIZED STREAMFLOW DATA SOURCES20

The naturalized streamflow data for California were obtained from the California Data 21
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Exchange Center (CDEC; http://cdec.water.ca.gov/). The data for the Colorado River 1

were obtained from James Prairie’s Internet site from the Upper Colorado Regional 2

Office of the Bureau of Reclamation (http://cadswes2.colorado.edu/~prairie/index.html). 3

The data from the Columbia River were obtained from an updated version of A.G. Crook 4

Company (1993). These naturalized streamflow estimates are generated by adding back 5

the consumptive use to the measurement from the streamflow gages for each month.  6

Although it is difficult to assess the quality of these naturalized flows, we calculated the 7

streamflow climatologies before and after the major dams were built in the rivers.   The 8

results showed that the Columbia River has the closest match of these climatologies, 9

followed by the Colorado and the greatest differences were found for the California rivers10

(Figure 2). Overall the differences in the climatologies are not large for the Colorado and 11

Columbia, supporting the use of the naturalized data. For the California rivers, the 12

differences are larger and this may affect the results for individual basins, although as it 13

will be seen, due to weighting used, the Columbia plays a dominant role on the detection 14

and attribution for the western US, and therefore the influence of the California rivers in 15

the Western US-wide detection and attribution analysis is marginal. 16

17

2.6 RIVER ROUTING   18

The VIC-simulated runoff and baseflow were routed, as in Lohmann et al. (1996), 19

to obtain daily streamflow data for four rivers:  1) The Sacramento River at Bend Bridge 20

(California), 2) the Colorado river at Lees Ferry (Arizona), 3) the Columbia River at The 21
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Dalles (Oregon) and 4) the San Joaquin River (California).  The data for the total flow of 1

the San Joaquin River were obtained by adding together the daily streamflow values from 2

the four main tributaries:  the Stanislaus, the Merced, the Tuolumne and the San Joaquin 3

Rivers (Figure 1).  The naturalized monthly observed data from these four rivers showed 4

strong correlations with the values obtained from the VIC model using the meteorological 5

data from Maurer et al. (2002) as input, suggesting that the calibration of the model is 6

good (Figure 3).  These rivers present runoff climatologies consistent with snow-7

controlled hydrologies with a maximum peak occurring around May or June (Figure 4), 8

although the Sacramento River is fed in part by runoff from lower elevations as well and 9

peaks in February-March.10

Although the variability of streamflow and CT is captured well, the trends in CT 11

by VIC-forced-by-gridded-observations (from Maurer et al. 2002) are all negative but 12

weak (non-significant) for all rivers (Figure 5, left panel).  This underestimates the 13

negative trend in the Columbia River, which is highly significant for the CT computed 14

from the naturalized flow (Figure 5, bottom right).  There are three possible explanations 15

for the weaker trends in CT computed from VIC-forced-by-gridded-observations 16

compared to the CT computed from the naturalized streamflow: 1) the naturalized 17

streamflow has errors, 2) the forcing data (precipitation, temperature and windspeed) for 18

VIC has errors, and 3) a deficiency in VIC to reproduce CT time-series.   It is important 19

to determine if there are serious deficiencies in VIC to produce CT time-series as this 20

study depends on the correct modeling of CT, for this reason an analysis was developed 21
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to look at the sources of errors from CT.  1

First, in order to discard possible large errors in the naturalized streamflow data 2

for the Columbia, we calculated the 1950 to 1999 trend in CT from a collection of 3

streamflow gauges from the Hydro-Climatic Data Network, updated using data from the 4

United States Geological Survey.  These gauges are relatively unimpaired by dams.  As 5

can be seen in Figure 6, the trends in CT in the high elevations of the Columbia River6

have magnitudes on the order of –0.2 days per year, consistent with the CT trend of –0.17 7

days per year from the naturalized streamflow of the Columbia River at The Dalles8

(Figure 5).  Note that coastal stations showed a trend towards later streamflow CT 9

(Figure 6).  Stewart et al. (2005) showed this opposite response in CT for coastal stations 10

that are not snow-dominated gauges.   Although the consistency of the CT trends at The 11

Dalles compared to Figure 6 is not a formal indication of the quality of the naturalized 12

data, the previous analysis gives us confidence that there is a significant trend in the CT 13

on the high-elevation parts Columbia basin, a result found also in Stewart et al. (2004).14

Second, we looked at possible errors in the trends of the forcing data used to drive 15

VIC.   In Figure 7, the basin average temperature and precipitation from the Maurer et al. 16

(2002) data1 (VIC forcing) and from the area-weighted average of the Climate Divisional 17

data for Washington State are shown. The trends in temperature in the VIC forcing data 18

are slightly weaker than the trends in the Climate Divisional data, while the trends in 19

precipitation are positive in the VIC forcing data and almost zero in the Climate 20

  
1An analysis using the alternative Hamlet and Lettenmaier (2005) meteorological data was also performed 
with similar results
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Divisional data.  One may ask: are these differences large enough to produce weaker 1

trends in CT in the VIC forced by observations compared to the naturalized flows?  We 2

modified the VIC input by increasing the temperature trend in an amount corresponding 3

to the difference in the trends from the Climate Divisional data and the VIC forcing, and 4

decreased the precipitation trend in the data using the same criteria.  The resulting dataset 5

(modified VIC forcing) has very similar basin-wide precipitation and temperature trends 6

compared to the Climate Divisional trends (not shown).  When CT was calculated using 7

the modified VIC forcing, the CT trend becomes strongly negative and highly significant 8

(β=-0.45 days per year, p<5.61x10-6).  Although it is possible that the Climate Divisional 9

data have errors (Keim et al. 2003), this approximate experiment suggests that there may 10

be errors of such magnitude in the trend of the forcing data that are sufficient to diminish 11

the trends in CT as shown in Figure 5 (left panels) and that the VIC model does not seem 12

to have serious deficiencies in modeling CT trends.  13

14

2.7 CALCULATION OF THE SIGNAL STRENGTH S15

For all runs, the Sacramento and San Joaquin rivers were added to form a single 16

streamflow time-series representative of the California region, leaving us with three 17

streamflow time series: the Sacramento/San Joaquin, Colorado, and Columbia rivers. The 18

center of timing (CT) of streamflow was computed from the simulated daily streamflow 19

time-series and was defined according to Maurer et al. (2007) as the day of the water year 20

when 50% of the water-year streamflow has passed through the channel at the calibration 21
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points shown in Figure 1. The CT of the observed naturalized flows was estimated from 1

the monthly data by allocating the monthly values to the middle days of the months and 2

interpolating the CT values between the months that correspond to the point where the 3

fractional flow was below and above 50%.  This procedure proved to be accurate using as 4

example the daily data from the models by comparing the results of computing the CT 5

from the dailies and the monthlies (not shown).    We therefore have 3 time series (one6

per river), each 50 years long, for the observations and for every anthropogenically 7

forced model run and 50-year segment of the control runs.8

The fingerprint is defined as the leading empirical orthogonal function (EOF) of 9

the ensemble averaged CT time series of the PCM and MIROC anthropogenically forced 10

ensemble members. That is, ensemble CTs for each of the three rivers were obtained by 11

averaging 14 members (4 from PCM and 10 from MIROC).  We wanted to focus mostly 12

on changes in river flow driven by snow melt, so, prior to computing the EOF, we 13

weighted each CT series by a factor equaling the basin’s climatological ratio of April 1 14

SWE divided to water year precipitation (P) using the data from the control runs. (April 15

1st is typically (within 12%) the date of maximum SWE accumulation in the western US16

(Bohr and Aguado 2001)). This choice emphasized rivers driven primarily by snowmelt, 17

and de-emphasized rivers driven primarily by rainfall.  A second set of weights accounted 18

for the area of the basins, so that time series representing larger areas would have 19

proportionally more influence.  Both type of weights, expressed as fractions, are shown in 20

Table 3. 21
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The EOF that comprises the fingerprint explains 78% of the variance.  The 1

resulting component is heavily biased toward the variability of the Columbia (because of 2

the weighting) and therefore the majority of the signal comes from this region.  The 3

fingerprint pattern is therefore a pattern with large loadings in the Columbia and small 4

loadings for the California and Colorado basins. In a following section the detection for 5

individual rivers will be provided.6

The standard deviation from the first 300 years of the CONTROLccsm run was 7

initially used to optimize the signal-to-noise ratio.  Optimization is a process used in 8

certain kinds of detection and attribution studies to accentuate the signal-to-noise ratio, 9

but it requires part of one of the control runs to be used for optimization purposes (and 10

not allow to be part of the detection).  In the present study, the optimized results differ 11

little from the non-optimized version (not shown).  We therefore use the non-optimized 12

solution to allow the entire CONTROLccsm run to be used for detection purposes. 13

It is important to examine whether the variability of the center timing in the 14

control runs is similar to the variability in the observations.  If the variability of the 15

control runs is significantly less than the observations, there is a risk of spurious detection 16

because forced trends in the observations could be significantly higher than the variability 17

from the control run but not the variability in the real world.  A comparison of the spectra 18

of a tree-ring reconstruction of the annual streamflow at the Upper Colorado River at 19

Lees Ferry (Meko et al. 2007) with the control runs (Figure 8a) indicated good 20

agreement, suggesting that the low-frequency streamflow variability is well captured by 21
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the models (see also supplementary information from Barnett et al. 2008). However a 1

similar comparison of the spectra of the streamflow at the Columbia River at The Dalles2

from the control runs with a tree-ring reconstruction (Gedalof et al. 2004) show that the 3

control runs generally over-predict the variability of the streamflow at the Columbia for 4

frequencies higher than 0.05 cycles/year or 20 year periodicities (Figure 8b).   Note that 5

the streamflow low-frequency variability of interest here is captured well by the models, 6

and that although Figure 8 is an indicator of the agreement of the annual streamflow 7

spectra between tree-ring data and models, it does not show the agreement between CTs.8

(CT cannot be computed from tree-ring streamflow reconstructions which have annual 9

resolution). For this reason we computed the standard deviations for the 5-year low pass 10

filtered CT for the control runs and naturalized observations and found that the standard 11

deviations are statistically the same.   The 5-year low pass filtered was used to remove 12

any high-frequency variability, for example associated with ENSO. The standard 13

deviations for the Columbia River CT are 5.9 days for the CONTROLccsm, 5.5 days for 14

the CONTROLpcm and 5.5 days for CT from the naturalized flow observations.  15

16

3. RESULTS17

The slopes of fitted linear trends of CT from 1950 to 1999 for the naturalized 18

flows are negative in the three rivers, although only in the Columbia the trends are 19

significant (Figure 5, right panel). In the ANTHRO ensemble all trends are negative with 20

significant trends in the Colorado and Columbia (Figure 9). By contrast, for the PCM 21
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solar volcanic runs the trends are in all cases positive with significant trends in the 1

Columbia (Figure 10).  Note that the CT trends in the ANTHRO runs are not strictly 2

comparable to the trends in the observations.  That is, the ANTHRO runs are not an “all-3

forcings” run (of a similar type to a 20c3m run), and solar and volcanic effects for 4

example are not included.  5

It is interesting to note that California has been one of the first places where the 6

earlier snowmelt has been reported; therefore the lack of significant CT trends in the 7

observations and in the model is puzzling.  However, if we look at the longer CT records 8

from 1907 to 2003, the observed trends in California are highly significant (β=-0.183 9

days/year, p=0.00046), therefore significant trends can be found when using the long-10

term data (not shown). 11

The resulting detection plot is shown in Figure 11.  The fingerprint is shown in 12

the top panel.  The detection variable S is shown in the lower panel.  We used a Monte 13

Carlo test (below) to estimate the likelihood that the model runs and the observations are 14

drawn from the control distribution.  The values of S, including the resulting 95% 15

confidence Monte Carlo error bars are positive for the observed naturalized flow and the 16

ANTHRO runs. By contrast, S is negative for the solar and volcanic runs.  This means 17

that the trends towards earlier river flow observed in the model runs and the observations 18

are unlikely to have been obtained from natural internal variability alone.  For reference, 19

an assessment of S significance using traditional statistics is shown in Table 4.20

It is important to assess the probability that the distribution of S in the 21
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ANTHROpcm and ANTHROmiroc runs (or the observations) is significantly different 1

from the distribution of S in the control runs. This was calculated using a Monte Carlo 2

method that estimates the likelihood of a given ensemble mean value of S can be drawn 3

from the control runs, given an ensemble of k members (k=4 for ANTHROpcm, k=10 for 4

ANTHROmiroc, k=2 for the solar/volcanic runs). Groups of k members were randomly 5

selected from among all the 50-year segments in the control runs, and their ensemble 6

average S calculated. This was repeated 10,000 times to form a distribution of control S7

for comparison with the anthropogenic models.  The same procedure was used for the 8

observed naturalized flow, although in this case with k=1, no ensemble averaging is 9

possible.  The ANTHROpcm and ANTHROmiroc ensemble means are unlikely to have 10

been drawn from the control distribution (p<0.05).  The observed naturalized flow also 11

differs from the control run at the p<0.05 level.  This implies that the human influences 12

on climate are discernible from the natural variability; that is detection has been achieved 13

at the 95% confidence level.  14

Attribution is addressed by determining whether the observed values of S are not 15

inconsistent with the anthropogenic and/or solar/volcanic model results. Assuming a 16

normal distribution, the means and standard deviations of the ANTHROpcm and 17

ANTHROmiroc S’s were calculated.  The difference between the S from the observations 18

and the ensemble mean of S’s from all the ANTHROpcm and ANTHROmiroc runs is 19

statistically small; hence the trends in the observations are consistent with the trends from 20

the anthropogenic runs.  On the other hand, the ensemble mean S from the solar and 21
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volcanic runs is more than four standard deviations away from the observations and more 1

than four standard deviations away from the mean of the anthropogenic runs (not shown), 2

suggesting they are from different statistical distributions than the observations. We 3

conclude that observed changes in river CT are consistent with human forcing of the 4

climate, and unlikely to have arisen from natural solar or volcanic variability.  5

We tested several configurations of the Western US model as shown in Table 5, 6

and find that the model is robust with respect to the choices selected.  That is, for all 7

combinations of models used in the fingerprint and control run used for the “noise”8

detection at the p<0.05 level was found (Table 5).  The only case where formal detection 9

failed that we found occurred when we did not use the SWE/P and area weights (not 10

shown).11

Following results from Stewart et al. (2005) and Dettinger and Cayan (1995), 12

which indicate shifts toward greater earlier streamflow fractions in the western US 13

basins, we applied the detection method to the streamflow fractions during the winter-14

spring, summer and the March fractions (not shown).  For the winter-spring fractions we 15

found detection at the p<0.05 level for all of the GCMs (not shown).  For summer the 16

observations do not show a strong enough trend to result in detectability at the 0.05 level 17

(not shown).  For the March fractions of the ANTHROpcm and the observations showed 18

detection at the 0.05 level, but the ANTHROmiroc failed to trend significantly (not 19

shown).  The weaker trends in MIROC compared to PCM and the observations indicate 20

that MIROC did not warm realistically (Bonfils et al. 2008).21
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We also investigated whether the detected changes were associated with 1

temperature or precipitation changes.  Pierce et al. (2008) repeated the entire detection 2

and attribution analysis using P instead of SWE/P, and found no detection at the p<0.10 3

level.  That study (Pierce et al. 2008) and previous studies (Mote et al. 2005, Stewart et 4

al. 2005) concluded that the reductions in snowpack are primarily driven by increases in 5

temperature over the western US (Pierce et al. 2008).  Thus we believe that the 6

temperature increases in winter and spring and associated reductions of snow versus rain 7

ratios (Knowles et al. 2007) and in the spring snowpack are responsible for the advanced 8

timing of streamflow.  9

Maurer et al. (2007) found no detection for California river flow using CT as a 10

detection variable.  We repeated our detection and attribution analysis using individual 11

rivers and likewise did not achieve formal detection for the Sacramento and the San 12

Joaquin rivers (Figure 12a; 12b).  For the Sacramento River, the  CT observations and the 13

MIROC anthro (ANTHROmiroc) fall within the overlap area where they are consistent 14

with both the anthropogenic results and the distribution of natural internal climate 15

variability. However, the PCM anthropogenic model runs (ANTHROpcm) proved to be 16

separate from the distribution of the control runs (CONTROLccsm and CONTROLpcm). 17

In such a case, although there is partial separation, detection of an anthropogenic effect 18

cannot be irrefutably claimed. This example illustrates the present difficulty of regional 19

detection and attribution, when averaging over relatively small regions often produces a 20

distribution of anthropogenically forced responses that is not yet well separated from that 21
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of natural internal variability, especially when the character of simulated natural 1

variability varies from model to model. In the case of the San Joaquin River and the 2

Upper Colorado River, the ANTHROpcm and ANTHROmiroc are well separated from 3

the distribution of trends from the control run (Figures 12b and 12c); however, the 4

observations fall between the overlap area where they are consistent with both the 5

anthropogenic results and the distribution of natural internal variability. In these cases 6

we cannot claim that detection is achieved. It is possible that the lack of trends in the 7

observations is due to the masking of the anthropogenic signal by the opposing effect of 8

solar-volcanic effects (as the observations are an “all-forcing” integration). It should be 9

emphasized that in some cases the ANTHRO runs predict a significant decline in the CT 10

trends that is not seen in observations (note that the fingerprint has negative loadings so 11

the sign of the trends are inverted in the Figure 12).  It should be kept in mind that the 12

ANTHRO runs are not “all-forcings” runs, they lack solar and volcanic effects for 13

example, and so the PCM model response to greenhouse gases only is not affected by 14

cooling effects from the solar-volcanic forcings.  Note also that for the Sacramento case, 15

the ANTHROmiroc does not separate well from the zero line, while the ANTHROpcm is 16

well separated.  The weaker trends in MIROC compared to PCM may be an indication 17

that MIROC did not warm realistically (Bonfils et al. 2008), but this finding awaits a 18

longer record to be conclusive. 19

In the case of the Columbia (Figure 12d) the detection and attribution of climate 20

change is evident in the separation of observed and modeled trends from the distribution 21
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of trends from the control run.   In the observations the effect of anthropogenic warming 1

is greater than any cooling effect from solar and volcanic sources and therefore results in 2

strong negative trends. One observation regarding the results from the Columbia is the 3

fact that if we assume that the effects of climate change are linear, one can add the trends 4

from the ANTHRO in Figure 9 and the solar-volcanic from Figure 10 and obtain near-5

zero trends for the observations.  At first glance this seems inconsistent with the 6

significant trends found for the Columbia in the naturalized data.   It can be argued that 7

either some forcings beside the considered anthropogenic and natural are missing or the 8

model is not able to reliably reproduce the response of the considered forcings.  9

Although these are two valid possibilities, it should be mentioned that we are not 10

claiming that the entire trend in the Columbia is associated with global warming, just a 11

fraction of it (for example in Barnett et al. 2008 it was estimated that for multiple 12

variables analyzed that fraction is around 60%).  Therefore other effects (e.g. the fact that 13

the PDO switched around the middle of the 1950-1999 period, increasing temperatures in 14

the Columbia basin) may have played a role in the observed CT trends in the Columbia.  15

We believe this does not invalidate the attribution part of this analysis as it has been 16

proven in other sources that the shift in the PDO is not enough to explain the change in 17

hydrological measures in the western US (Stewart et al. 2004; Knowles et al. 2006; Mote 18

et al. 2005; 2008).19

4. CONCLUSIONS 20

A formal attribution and detection procedure can provide insight into the nature of 21
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observed changes in the streamflow timing from key snowmelt watersheds over the 1

western U.S.  If the changes towards earlier timing of streamflow are found to be 2

associated with natural variability, it would be expected that after some time the climate 3

system would rebound towards later streamflow timings, and the hydrology would revert 4

towards more snow (and less rain) in the winter and therefore higher flows in summer.  5

If the changes observed are unequivocally associated with anthropogenic warming (due 6

to changes in the composition of the atmosphere), however, the decreases in winter snow 7

to rain ratios and the timing of snowmelt can only become more pronounced as ongoing 8

changes in atmospheric chemistry become more acute. 9

Using an optimal detection method, we found that observed streamflow center 10

timing (CT) trends lie beyond a good share of the distribution of trends from simulations 11

of natural variability. We find a detectable signal (at the p<0.05 level) on the timing of 12

streamflow over the second half of the 20th century towards earlier streamflow timing. 13

The changes in streamflow timing are dominated by changes over the Columbia River 14

basin, with lesser signals arising from the California Sierra watersheds and little from the 15

Colorado River basin. This indicates that climate change is an important signal, but also 16

indicates that other climatic processes have also contributed to the hydrologic variability 17

of large basins in the western US. 18

The present study employed two control runs (CCSM3-FV and PCM) and two 19

anthropogenically forced models (PCM and MIROC), allowing us to test several 20

configurations of the streamflow timing (CT) detection options by using one or the other 21
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control and anthropogenic runs.  For CT, the big picture from these experiments indicates 1

a shift toward earlier streamflow, which cannot be explained solely by natural variability. 2

All the options in the selection of the models to use for control and anthropogenic runs 3

resulted in detections at the 95% confidence level, indicating that the results are robust 4

with respect to these choices. For streamflow fractional timing PCM showed positive 5

detection for winter, summer and March, but MIROC yielded detection only in summer.  6

For all model cases, the Columbia basin was the major contributor to the detection with 7

less influence from California and little from the Colorado. Comparison of two 8

downscaling methods (Barnett et al., 2008), showed little dependence of the detection 9

and attribution results to with respect to the downscaling method.  In summary, we can 10

now state with “very high confidence” (Solomon et al. 2007, Box TS-1) that recent trends 11

toward earlier streamflows in the Columbia Basin are in part due to anthropogenic 12

climate change. 13

In the cases when detection was positive, we tested the attribution of those 14

changes to two possible explanations:  anthropogenic forcings or to natural forcings.  In 15

all cases the attribution was consistent with the anthropogenic forcing explanation and 16

inconsistent with the solar volcanic (natural forcings) explanation.  Consistent with the 17

results from Bonfils et al. (2008) for temperature and Pierce et al. (2008) for snow 18

changes, the advance in streamflow timing in the western US appears to arise, to some 19

measure, from anthropogenic warming.  Thus the observed changes appear to be the early 20

phase of changes expected under climate change.  This finding presages grave 21
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consequences for the water supply, water management and ecology of the region.  In 1

particular, more winter and spring flooding and drier summers are expected, as well as 2

less winter snow (more rain) and earlier snowmelt.  3

4
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6. APPENDIX: Downscaling with constructed analogues1

6.1 Step 1: Fitting a coarse-resolution analogue2

Once the pool of predictor patterns has been selected for a given coarse-resolution Tmax, 3

Tmin or P pattern for a certain day and year (Zobs), an analogue of that pattern  ( Zobs ) can 4

be constructed as a linear combination of the (preferred 30-member most-suitable subset 5

of) predictor patterns, according to: 6

7

Z Z Z Aobs obs ana ues ana ues≈ = log log (A1)8

9

where Zanalogues is a matrix of the column vectors comprising the most-suitable subset of 10

coarse-resolution patterns identified above specifically for Zobs, and Aanalogues is a column 11

vector of fitted least-squares estimates of the regression coefficients that are the linear 12

proportions of the contributions of each column of Zanalogues to the constructed analogue.  13

The dimensions of the Zobs matrix are pcoarse x 1, where pcoarse is the number of 14

considered gridpoints contained in each coarse-resolution weather pattern; that is, Zobs is a 15

column vector.  The dimensions of Zanalogues are pcoarse,x n, where n is the number of 16

patterns in the most suitable predictors subset (i.e. 30), and the dimension of Aanalogues is n 17

x 1. 18

Assuming Zanalogues has full rank (n) and using the definition of the pseudo-inverse 19

(Moore-Penrose inverse), Aanalogues is obtained from Equation A1 by:20

21
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( )A Z Z Z Zana ues ana ues ana ues ana ues obslog log
'

log log
'= 





−1

 (A2)1

2

where the ‘ superscript denotes the transpose of the matrix.  The inversion of the matrix 3

was performed using singular value decomposition routine from Press et al. (1992), in 4

which small values of the decomposition were set equal to zero to avoid near-singular 5

matrices.6

6.2 Step 2: Downscaling a weather pattern7

To downscale the Zobs pattern, the coefficients Aanalogues from Equation A2 are applied 8

to the high-resolution weather patterns corresponding to the same days as the coarse-9

resolution predictors Zanalogues, according to:10

11

log logP P Adownscaled ana ues ana ues= (A3)12

From Equation A2:13

14

( )log log
'

log log
'P P Z Z Z Zdownscaled ana ues ana ues ana ues ana ues obs= 





−1

(A4)

15

where Pdownscaled is a constructed high-resolution analogue (e.g. a P pattern on the VIC 1/8  16

degree grid) and Panalogues is the set of high-resolution historical patterns corresponding to 17

the same days as the Zanalogues.  The dimension of the Pdownscaled vector is pVIC x 1, and the 18

dimension of the Panalogues matrix is pVIC x n, where pVIC  is the number of gridpoints in the 19
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high-resolution weather patterns. Note that the matrix, Z’analoguesZanalogues, inverted with 1

each application of the procedure is only of dimension n x n, and therefore the numerical 2

computational resources needed to downscale the weather patterns are determined by the 3

number of the patterns included in the most-suitable subset and can be quite small.4

5

6
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Table 1. Characteristics of the runs used in this study1

Name Model Ver. Origin Res. # of 

years

CONTROLccsm CCSM-FV 3.0 NCAR 1x1.25 850

CONTROLpcm PCM 2.1 NCAR T42L26 750

ANTHROpcm PCM 2.1 NCAR T42L26 4x50

ANTHROmiroc MIROC 3.2 CCSR, NIES 

FRCGC

T42L20 10x50

Solar-volcanic PCM 2.1 NCAR T42L26 2x50

2

NCAR: National Center of Atmospheric Research, USA3

CCSR: Center for Climate System Research at the University of Tokyo, Japan4

NIES: National Institute for Environmental Studies, Japan5

FRCGC: Frontier Research Center for Global Change, Japan6

7
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Table 2. River basin characteristics1

Stream gage Latitude Longitude Elevation (m)
Approx 

Area 

N W min max avg. km2

Columbia river at The Dalles 45.600 121.200 130 3113 1395 679250

Colorado river at Lees Ferry 36.920 111.550 1167 3700 2188 279650

Sacramento river at Bend Bridge 40.289 122.186 149 2483 1309 31970

Stanislaus river at Goodwin 37.852 120.637 299 2758 1630 2450

Tuolumne river at La Grange Dam 37.666 120.441 190 3138 1910 4750

Merced river near Merced Falls 37.522 120.300 212 3104 1578 2590

San Joaquin river below Friant 36.984 119.723 154 3517 2012 5330

2
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Table 3. Weights used in the calculation of fingerprint.  The weights have been 1

normalized so that their summation is equal to 1.2

3

SWE/P weights Area weights  Total weights4

California 0.20  0.05 0.025

Colorado  0.31   0.28 0.206

Columbia 0.49 0.67 0.787
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Table 4. t-test and Mann-Kendall (MK) probabilities of test for significance of signal 1

strength 2

3
t-test MK test4

5
Observations 0.0127 0.03436

7
ANTHROpcm 0.0092 0.00338

9
ANTHROmiroc  0.0179 0.021510

11
Solar Volcanic PCM  0.0244 0.022912

13
14
15
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Table 5. Testing of different model configurations for detection1

Setting CASE 1 CASE 2 CASE 3 CASE 4 CASE 5

Fingerprint PCM + MIROC PCM MIROC PCM+MIROC PCM + MIROC

Noise CCSM + PCM CCSM + PCM CCSM + PCM CCSM PCM

Detection level <0.05 <0.05 <0.05 <0.05 <0.05

Setting CASE 6 CASE 7 CASE 8 CASE 9

Fingerprint PCM PCM MIROC MIROC

Noise CCSM PCM CCSM PCM

Detection level <0.05 <0.05 <0.05 <0.05

2

3
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FIGURE CAPTIONS1

2

Figure 1. a) Location of the river gages in the western US  and b) elevation (in meters 3

above sea level). The data have been trimmed to the study domain.4

5

Figure 2. Streamflow climatologies of naturalized flow for two periods: pre and post 6

construction of major dams in the rivers. 7

8

Figure 3. Monthly modeled versus naturalized streamflow for selected major basins in the 9

western US.10

11

Figure 4. 1950-1999 observed climatologies of precipitation, temperature and runoff for 12

basins in the western US at gages shown in Table 2.  The box is bounded by the lower 13

and upper quartiles; the median is shown inside the box; and the whiskers extend 1.5 14

times the interquartile range or to the extent of the data.  Values outside the whiskers are 15

shown with the “+” symbol.16

17

Figure 5. Time-series of the center timing (CT) of modeled (left panel) and naturalized 18

streamflow (right panel) from 1950 to 1999. The values of the slope ( ) are shown, as 19

well as the significance of the trend (in parenthesis). The values of CT are given in days 20
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from October 1st.  The meteorological data used to force VIC is from Maurer et al. 1

(2002).2

3

Figure 6. Trends in CT (days/year) from streamflow observations from 1950 to 1999 in 4

the Columbia River Basin (CRB). The streamflow observations were obtained from the 5

Hydro-climatic Data Network (HCDN) and updated from measurements from the United 6

States Geological Survey. The CRB area is shown in green.7

8

Figure 7. Standardized time series of annual average temperature (Tavg) and precipitation 9

(prec) from 1950 to 1999 from two datasets: Maurer et al. (2002) gridded dataset, and the 10

Climate Divisional Data (http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#).11

12

Figure 8. Power spectra of the streamflow at a) the Upper Colorado River at Lees Ferry 13

and b) the Columbia River at the Dalles from the PCM and CCSM3-FV control runs 14

compared to tree-ring reconstructions.15

16

Figure 9. Same as Figure 5 but for ensemble of the ANTHROpcm and ANTHROmiroc 17

model simulations.18

19

Figure 10. Same as Figure 5, but for the ensemble mean of the PCM solar-volcanic model 20

simulations.21
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1

Figure 11. (a) the fingerprint (PC1 loadings) of the ensemble mean including both 2

ANTHROpcm and ANTHROmiroc CT series for three major western US rivers and (b) 3

the detection plot for CT. The 95% confidence intervals for the signal strength were 4

calculated using a Monte Carlo resampling of the control runs.5

6

Figure 12.  Detection plot for individual rivers of the western US.7
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construction of major dams in the rivers.  
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Figure 4. 1950-1999 observed climatologies of precipitation, temperature and runoff for basins 
in the western US at gages shown in Table 2.  The box is bounded by the lower and upper 
quartiles; the median is shown inside the box; and the whiskers extend 1.5 times the 
interquartile range or to the extent of the data.  Values outside the whiskers are shown with the 
“+” symbol.
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Figure 5. Time-series of the center timing (CT) of modeled (left panel) and 
naturalized streamflow (right panel) from 1950 to 1999. The values of the 
slope (β) are shown, as well as the significance of the trend (in parenthesis). 
The values of CT are given in days from October 1st.  The meteorological data 
used to force VIC is from Maurer et al. (2002). 
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Figure 6. Trends in CT (days/year) from streamflow observations from 1950 to 
1999 in the Columbia River Basin (CRB). The streamflow observations were 
obtained from the Hydro-climatic Data Network (HCDN) and updated from 
measurements from the United States Geological Survey. The CRB area is shown 
in green.
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Figure 7. Standardized time series of annual average temperature (Tavg) and 
precipitation (prec) from 1950 to 1999 from two datasets: Maurer et al. (2002) 
gridded dataset, and the Climate Divisional Data 
(http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#).
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Figure 8. Power spectra of the streamflow at a) the Upper Colorado River at 
Lees Ferry and b) the Columbia River at the Dalles from the PCM and 
CCSM3-FV control runs compared to tree-ring reconstructions.

a) Flow in the Upper Colorado River

b) Flow in the Columbia River
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Figure 9. Same as Figure 5 but for ensemble of the ANTHROpcm and
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SOLAR VOLCANIC - Colorado

1950 1960 1970 1980 1990

170

180

190

year

C
T

SOLAR VOLCANIC - California

1950 1960 1970 1980 1990

240

245

250

255

year

C
T

1950 1960 1970 1980 1990
245

250

255

260

year

C
T

SOLAR VOLCANIC - Columbia

β=0.034 days/year  (0.687)

β=0.065 days/year  (0.176)

β=0.078 days/year  (0.023)

Figure 10. Same as Figure 5, but for the ensemble mean of the PCM solar-
volcanic model simulations.



Figure 11. (a) the fingerprint (PC1 loadings) of the ensemble mean including both 
ANTHROpcm and ANTHROmiroc CT series for three major western US rivers and 
(b) the detection plot for CT. The 95% confidence intervals for the signal strength 
were calculated using a Monte Carlo resampling of the control runs.
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Figure 12.  Detection plot for individual rivers of the western US. 


